CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK B.Sc Chemistry

Those who have joined from the Academic year 2023-24 onwards

- Students will possess basic subject knowledge required for higher studies, professional andapplied courses
- Students will acquire basic Practical skills & Technical knowledge along with domain knowledge of different subjects in the science & humanities stream.
- Students will develop scientific aptitude Integrate skills of analysis, critiquing, application and creativity.
- Students will employ appropriate digital tools and techniques necessary in analysing data and reative design.
- Students will gain competence to pursue higher learning, research and careers or will be able toopt for entrepreneurship
- Students will interact meaningfully with others displaying leadership and coordination inexecuting projects.
- Students will demonstrate responsibility as citizens committed to national developmentthrough community outreach, wellness of self and a sustainable environment.

PROGRAMME SPECIFIC OUTCOMES

- PSO1: Students acquire in-depth knowledge of the fundamental concepts in all disciplines of chemistry.
- PSO2: Students can disseminate the basics of chemistry and advanced topics and analyticalskills in organic, inorganic and physical chemistry.
- PSO3: Students will be able develop creativity in academics and research.
- **PSO4:** Students will be able apply digital tools to collect, analyse and interpret data and presentscientific findings.
- PSO5: gain competence to pursue higher education and career opportunities in chemistry and allied fields.
- PSO6: exhibit leadership qualities to work individually and within a team in organizing curricular, co-curricular and extra curricular activities.
- **PSO7:** apply the concepts of chemistry to solve problems in the community, entrepreneurial andresearch pursuits.
- **PSO8:** exhibit competence in educational, industrial and research pursuits that contributetowards the holistic development of self and community.

L1. Date of Language Date of Language <thdate language<="" of="" th=""> <thdate language<="" of="" th=""> <t< th=""><th>Sem I</th><th>Cre</th><th>Sem II</th><th>Cre</th><th>Sem III</th><th>Cre</th><th>Sem IV</th><th>Cre</th><th>Sem V</th><th>Cre</th><th>Sem VI</th><th>Cre</th><th></th></t<></thdate></thdate>	Sem I	Cre	Sem II	Cre	Sem III	Cre	Sem IV	Cre	Sem V	Cre	Sem VI	Cre	
Langunge Langunge Langunge Langunge Langunge Course - CC XI Course - CC XI Course - CC XI 12 3 2.2 3 3.2 5.2 Grue - COURS - COURS - CC XI 4 6.2 COURS - COURS - CC XI 4 6.3 Core - CC XI 4 6.3 Course - CC XI 4 6.4 Course - CC XI COURS - COURS - CC XI 4 6.4 Course - CC XI COURS - CC XII 7 6.4 6.4 6.4 7 1.4 Course - CC II CC IV 3 3.5 1.5 1.5 1.6 5.6 COURS - CC XII 7 1.6 6.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7	1.1.	3	2.1.	3	3.1.	3	4.1.	3	5.1 Core	4	6.1 Core	4	
1.2 1.3 2.2 3 3.2 3 4.2 3 5.2 Core Course - Course - CC X CC XI CC X 1.3 Core Course - CC I 4 2.3 Core Course - CC II 4 3.3 Core Course - CC II 4 3.3 Core CC X 4 5.2 Core CC X 4 6.3 Core CC X 4 6.3 Core CC X 4 6.3 Core CC X 6.4 6.3 Core CC X 6.4 6.3 Core CC X 6.4 6.3 Core CC X 6.4 6.4 6.4 5. 1.4 Core CC II CI II C VI C VII C VIII C C XII C C XII 6.4 6.4 7. 1.4 Core CC II 2.5 3 3.5 1.5 1.5 5.4 6.5 -VII 6.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7	Language		Language		Language		Languag		Course -		Course -		
1.2 3 2.2 3 3.2 3 4.2 3 5.2 5.2 Corre 4 0.2 <th0.2< th=""></th0.2<>	1.0	2	2.2	2	2.0	2	e	2	\CC IX	4	CC XIII	4	
I.3 Core Course Course CC 4 2.3 Core CC CC X CC X 1.3 Core Course CC 4 2.3 Core Course CC 4 4.3 Core Course CC 4 5. 4 6.5 Core Course CC 4 6.4 5. 4 6.4 5. 1.4 Core Course CC 2.4 Core Course CC 4 4.4 Core CC 4 5. 4 6.4 3.4 1.4 Core Course CC 4 2.4 Core CC 4 5. 4 6.4 6.4 3.5 1.4 Core CC CV 2.5 3.3 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.6 5.5 5.6 5.6 1 <td>1.2 English</td> <td>3</td> <td>2.2 English</td> <td>3</td> <td>5.2 English</td> <td>3</td> <td>4.2 English</td> <td>3</td> <td>5.2 Core Course –</td> <td>4</td> <td>6.2 Core Course –</td> <td>4</td> <td></td>	1.2 English	3	2.2 English	3	5.2 English	3	4.2 English	3	5.2 Core Course –	4	6.2 Core Course –	4	
1.3 Core Course - CC I 4 2.3 Core Curse - CC VI Core 4 6.3 Core Course - CC VI Core 4 5. 4 6.6.7 6.4 5. 1.4 Core Course - CC II 4 2.4 Core Course - CC II 4 3.4 Core Course - CC VI 4 6.4 5. 4 6.6.4 3 1.4 Core Course - CC II 4 2.4 Core Course - CC IV 4 3.4 Core Course - CC VII 4 6.4 5. 4 6.4 3 1.5 3 2.5 I 3 3.5 3 4.5 3 5.4 8 6.5 3 1.5 IElective III Generic/ Elective III Generic/ 3 4.5 5.4 8 6.5 3 1.6 Skill 1 4.5 5.5 3 6.6 1	8		8		8		8		CC X		CC XIV		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.3 Core	4	2.3 Core	4	3.3 Core	4	4.3 Core	4	5.	4	6.3 Core	4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Course –		Course –		Course –		Course –		3.Core		Course –		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							Core		CC -XI				
1.4 Core Course – CC II 4 2.4 Core Course – CC IV A Gore Course – CC IV A Gore Course – CC VI A Gore Course – CC VI A Gore Course – CC VII A Gore COURSe – CC VIII A Gore CC VII							Industry						
1.4 Core Course - CC IV 4 3.4 Core Course - CC VI 4 4.4 4.4 4.4 6.6 5 Course - CC IV COURSe - CC VI COURSe - CC VIII 5.0 4 6.6 5 1.5 3 2.5 3 3.5 3 4.5 3 5.4 6 5 1.5 3 2.5 3 3.5 3 4.5 3 5.4 6.5 3 Elective I Generic/ Elective II Generic/ Elective II Generic/ Elective II Generic/ 5 6.5 3 6.5 3 6.5 3 6.5 1 6 Discipline Discipline Specific Specific Disciplin 0 6 1 0 <td< td=""><td>1.4.0</td><td></td><td>24.0</td><td></td><td>24.0</td><td></td><td>Module</td><td></td><td>~</td><td>4</td><td><i>c</i> 1</td><td>2</td><td></td></td<>	1.4.0		24.0		24.0		Module		~	4	<i>c</i> 1	2	
$ \begin{array}{c cccc} CC II \\ CC II \\ CC II \\ I.5 \\ Elective II \\ Generic/ \\ Discipline \\ Specific \\ Specific \\ Specific \\ I.6 Skill \\ Enhancem \\ ent Course \\ SFC-1 \\ (NME) \\ I.7 Ability \\ enhancem \\ ent \\ Course \\ SFC-3 \\ CC VI \\ I.7 Ability \\ enhancem \\ ent \\ Course \\ SFC-3 \\ CC VI \\ I.7 Ability \\ enhancem \\ ent \\ Course \\ SFC-4 \\ (NME) \\ I.7 Ability \\ enhancem \\ ent \\ Course \\ SFC-5 \\ SFC-5 \\ SFC-5 \\ SFC-5 \\ SFC-6 \\ SFC-6 \\ SFC-6 \\ SFC-7 \\ $	1.4 Core Course –	4	2.4 Core Course –	4	3.4 Core Course –	4	4.4 Core Course –	4	5. 3 Core	4	6.4 Elective	3	
I.5 3 2.5 3 3.5 Image: specific constraints of the constraints o	CC II		CC IV		CC VI		CC VIII		Course –		-VII		
1.5 3 2.5 3 3.5 3 4.5 3 3.6.5 3 5.5 Elective I Generic/ Discipline Generic/ Discipline Discipline Discipline Specific 3 6.5 3 Specific Discipline Discipline Discipline Specific 3 6.5 1 Specific Specific Specific Specific Specific Generic/ Discipline 1.6 Skill 2 2.6 Skill 2 3.6 Skill 1 4.6 Skill 2 5.5 3 6.6 Enhancem ent Course SEC-4 SEC-4 SEC-4 SEC-4 Secific Secific SEC-1 SEC-3 SEC-5 SEC-6 Discipline Specific Activity Activity SEC-3 SEC-5 SEC-7 SEC-7 Course Course Secific Notivity I.1 Ability 2 2.8 Ability 2 3.7 Ability 2 4.7 T 2 5.6 2 6.7 2 I.1 Ability 2 2.8 Ability 2 3.7 Ability 2 4.7 T 2 5.6 2 6.7 2 I.1 Ability 2 2.8 Ability									/ Project		Generic/		
1.5 3 2.5 3 3.5 3 4.5 3 5.4 3 6.5 3 Elective II Generic/ Discipline Elective II Generic/ Discipline 3 4.5 1 Elective V 8 Elective V VIII Specific Specific Specific Specific 10 Generic/ Discipline Discipline Specific Generic/ Discipline Discipline Specific Generic/ Disciplin Specific 2.6 Skill 2 3.6 Skill 1 Enhancem ent Course Enhancem Enhancem Enhancem Enhancem Elective VI N SEC-1 SEC-2 SEC-4 SEC-4 SEC-4 SEC-4 SEC-4 SEC-4 Course SEC-6 Disciplin ne Specific Activity Kill 2 3.7 Skill 2 4.7 Skill 2 5.6 2 6.7 2 LiA Skill 2 3.7 Ability 2 4.7 T 2 5.6 2 6.7 2 LiA Skill 2 3.7 Ability 2 4.7 T 2 5.6 2 6.7 2 LiA Skill 2 3.7 Ability 2 4.7 T 2 5.5 2 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>with</td> <td></td> <td>Discipli</td> <td></td> <td></td>									with		Discipli		
1.532.533.534.535.435.536.53Elective II Generic/ Discipline SpecificGeneric/ Discipline SpecificDiscipline SpecificSpecificSpecificSpecificSpecificGeneric/ Disciplin SpecificGeneric/ Discipline SpecificGeneric/ Discipline SpecificGeneric/ Discipline SpecificGeneric/ Discipline SpecificGeneric/ Discipline SpecificGeneric/ Disciplin SpecificGeneric/ Disciplin SpecificGeneric/ Disciplin NeGeneric/ Disciplin SpecificGeneric/ Disciplin SpecificGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ Disciplin NeGeneric/ NIGeneric/ Disciplin NeGeneric/ NISpecificII1.6 Skill SEC-1 (NME)23.6 Skill (Entancem ent Course SEC-32S.536.611.7 Ability Course ry Course ry Course ry Course ry Course ry Course ry Course23.7 Skill Soft Skill-324.7 Skill Soft Skill-326.722323232225262021212323232225262121									viva- voce		ne Specific		
1.5 3 2.5 3 3.5 1 3 4.5 3 5.4 3 6.5 3 Elective I Generic/ Discipline Generic/ Discipline Discipline Specific									CC -XII		speenie		
Elective I Generic/ Discipline Specific Specific L 6 Skill Enhancem ent Course SEC-1 (ME) CME) Compulso ry Course ent Compulso ry Course ent Compulso ry Course ent Compulso ry Course ent Compulso ry Course Soft Skill-1 Soft Skill-2 Compulso ry Course Stable Cour	1.5	3	2.5	3	3.5	3	4.5	3	5.4	3	6.5	3	
Ochemics Discipline SpecificOchemics Discipline SpecificOchemics Discipline SpecificOchemics Discipline specificOchemics Discipline e specificOchemics Discipline e specificOchemics Discipline e specificOchemics Discipline e specificOchemics Discipline e mentOchemics Discipline e mentOchemics Discipline e e the specificOchemics Discipline e mentOchemics Discipline e the specificOchemics Discipline e the specificOchemics Discipline e the specificOchemics Discipline e the specificOchemics Discipline e the specificOchemics Discipline e the specificOchemics Discipline e the specificOchemics Discipline the specificOchemics Discipline the specificOchemics Course the specificOchemics Discipline the specificOchemics Discipline the specificOchemics Discipline the specificOchemics Discipline the specificOchemics Discipline the specificOchemics SpecificOchemics <br< td=""><td>Elective I Generic/</td><td></td><td>Elective II Generic/</td><td></td><td>Elective III Generic/</td><td></td><td>Elective</td><td></td><td>Elective</td><td></td><td>Elective</td><td></td><td></td></br<>	Elective I Generic/		Elective II Generic/		Elective III Generic/		Elective		Elective		Elective		
SpecificSpecificSpecificSpecificDiscipli e SpecificDiscipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specificGeneric/ Discipli ne specific1.6 Skill22.6 Skill23.6 Skill114.6 Skill25.536.61Enhancem ent Course SEC-1 (NME)Course SEC-2 (NME)SEC-4, (Entrepren ent Course Skill)114.7 Skill Enhancem ent Course SEC-626.72Professi ent Course ent Course -SEC-323.7 Skill Enhancem ent Course SEC-525.626.721.7 Ability Enhancem ent compulso ry Course (AECC) Soft Skill-123.7 Ability ent ent compulso ry Course (AECC) Soft Skill-123.8 E.V.S-4.725.5221.8 Skill Compulso ry Course ry Course (AECC) Soft Skill-123.8 E.V.S-4.8221.8 Skill Compulso ry Course ry Course ry Course ry Course220202021-1.8 Skill-1222222222222222222 <td>Discipline</td> <td></td> <td>Discipline</td> <td></td> <td>Discipline</td> <td></td> <td>Generic/</td> <td></td> <td>Generic/</td> <td></td> <td>V 111</td> <td></td> <td></td>	Discipline		Discipline		Discipline		Generic/		Generic/		V 111		
I.6 Skill Enhancem ent Course SEC-1 (NME)22.6 Skill Enhancem ent Course SEC-2 (NME)23.6 Skill Enhancem ent Course SEC-4, (Entrepren eurial Skill)14.6 Skill Enhance ment Course SEC-6 Elective Discipli ne SEC-636.6 Extensio n Activity1.6 Skill ent Course SEC-1 (NME)22.7 Skill Enhancem ent Course25.5 SC-4, (Entrepren eurial Skill)336.6 Extensio n122.7 Skill Enhancem ent Course -SEC-323.7 Skill Enhancem ent Course SEC-525.6 Value Enhance ment Course SEC-726.7 Professi onal course secific21.7 Ability Enhancem ent course (AECC) Soft Skill-123.7 Ability Soft Skill-324.7 Still Soft Skill-325.5 Course course SEC-726.7 Professi onal course secific21.8 Skill Compulso ry Course (AECC) Soft Skill-123.8 E.V.S-4.8 E.V.S22.5 Soft Soft Soft Soft22.62.11.8 Skill Course Production an to Compulso23232225262021	Specific		Specific		Specific		Disciplin		Discipli		Generic/		
1.6 Skill Enhancem ent Course SEC-1 (NME)22.6 Skill Enhancem ent Course SEC-2 (NME)23.6 Skill Enhancem ent Course SEC-4, (Entrepren eurial Skill)14.6 Skill Enhance ment Course SEC-6 WI SEC-6 Poiscipli ent Course SEC-6 Poiscipli ne SEC-6 Poiscipli ent Course SEC-6 Poiscipli ent Course SEC-6 Poiscipli ent Course SEC-6 Poiscipli ent Course SEC-6 Poiscipli ent Course SEC-714.6 Skill Elective VI Discipli ent SEC-6 Poiscipli ent Course SEC-726.6 Extensio n Activity1.7Ability Enhancem ent course -SEC-323.7 Skill SEC-524.7 Skill Enhance SEC-725.6 Professi onal Compete ncy Skill21.7Ability Enhancem ent compulso ry Course (AECC) Soft Skill-123.7 Ability Soft Skill-324.7 T Poiscipli Enhancem ment Compulso ry Course (AECC) Soft Skill-123.7 Ability Soft Skill-325.5 Course Poiscipli Enhancem ment Compulso ry Course (AECC) Soft Skill-324.7 T Poiscipli Points25.7 Poiscipli Points21.8 Skill Course Points23.8 E.V.S-4.8 E.V.S222621							e Sasaifia		ne Succific		Discipli		
1.6 Skill 2 2.6 Skill 2 3.6 Skill 1 4.6 Skill 2 5.5 3 6.6 1 Enhancem ent Course SEC-1 (NME) SEC-2 (NME) (NME) 2 3.7 Skill 1 4.6 Skill 2 5.5 3 6.6 1 Enhancem ent Course SEC-1 (NME) SEC-2 (NME) (NME) 2 3.7 Skill 2 4.7 Skill 2 5.6 2 6.7 2 Enhancem ent Course 2.7 Skill 2 3.7 Skill 2 4.7 Skill 2 5.6 2 6.7 2 I.7 Ability Enhancem ent Course 2 2.8 Ability 2 3.7 Skill 2 4.7 Skill 2 5.5 2 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>specific</td> <td></td> <td>specific</td> <td></td> <td>Specific</td> <td></td> <td></td>							specific		specific		Specific		
Enhancem ent Course SEC-1 (NME)Enhancem ent Course (NME)Enhancem ent Course SEC-2, (NME)Enhancem ent Course SEC-4, (Entrepren eurial Skill)Enhancem ment Course SEC-6Elective NExtensio n Activity1.7 Ability Enhancem ent compulso ry Course (AECC) Soft Skill-123.7 Ability Enhancem ent Course24.7 Skill Enhancem ent Course SEC-525.626.721.7 Ability Enhancem ent compulso ry Course (AECC)23.7 Ability Enhancem ent ent23.7 Ability 	1.6 Skill	2	2.6 Skill	2	3.6 Skill	1	4.6 Skill	2	5.5	3	6.6	1	
Ent Course SEC-1 (NME)ent Course SEC-2 (NME)Sec C-4, (Entrepren eurial Skill)Course SEC-6Generic/ Discipli ne SPecificActivity2.7 Skill Enhancem ent Course -SEC-323.7 Skill Skill)24.7 Skill Enhancem ent Course SEC-725.626.721.7 Ability Enhancem ent course onal course -SEC-323.7 Ability Enhancem ent Course SEC-525.5221.7 Ability Enhancem ent ent course on course ry Course (AECC) Soft Skill-123.7 Ability Enhancem ent	Enhancem		Enhancem		Enhancem		Enhance		Elective		Extensio		
(NME)(NME)(Entrepren eurial Skill)SEC-6Discipil ne SpecificNo.722.7 Skill23.7 Skill24.7 Skill25.626.72Enhancem ent Course -SEC-323.7 Ability24.7 Skill25.626.721.7 Ability Enhancem ent ent Compulso ry Course (AECC) Soft Skill-123.7 Ability Enhancem ent ent Compulso ry Course (AECC)23.7 Ability Enhancem ent Compulso ry Course (AECC) Soft Skill-123.7 Ability Enhancem ent Compulso ry Course (AECC) Soft Skill-324.725.521.8 Skill Enhancem ent Compulso ry Course (AECC) Soft Skill-123.8 E.V.S-4.8 E.V.S21.8 Skill Enhancem ent Course2232322252621	SEC-1		SEC-2		SEC-4.		Course		VI Generic/		n Activity		
eurial Skill)eurial Skill)nene Specificnene Specific2.7 Skill Enhancem ent Course 	(NME)		(NME)		(Entrepren		SEC-6		Discipli				
SkillSkillSkillSpecific <th< td=""><td></td><td></td><td></td><td></td><td>eurial</td><td></td><td></td><td></td><td>ne</td><td></td><td></td><td></td><td></td></th<>					eurial				ne				
L. FormL. SoftL. Soft			2.7 Skill	2	SKIII) 3.7 Skill	2	4.7 Skill	2	Specific 5.6	2	67	2	
ent Course -SEC-3ent Course SEC-5ment Course 			Enhancem	2	Enhancem	2	Enhance	2	Value	2	Professi	2	
SEC-3SEC-5Course SEC-7nCompete ncy Skill1.7Ability Enhancem ent Compulso ry Course (AECC)23.7 Ability Enhancem ent Compulso ry Course (AECC)23.7 Ability Enhancem ent Compulso ry Course (AECC)24.7 TAbility Summer Enhance ment Compulso ry Course (AECC)3.7 Ability Enhancem ent Compulsor y Course (AECC)25.5 Summer Internshi ment Compulso ry Course (AECC)24.7 Enhance Summer Internshi ment Compulso ry Course (AECC)1.48 Still-321.8 Skill Enhancem ent - (Foundatio n Course)23.8 E.V.S E.V.S-4.8 E.V.S2232322252621Total Credit Points			ent Course		ent Course		ment		Educatio		onal		
1.7Ability Enhancem ent Compulso ry Course (AECC)22.8 Ability Enhancem ent Compulso ry Course (AECC)23.7 Ability Enhancem ent Compulsor y Course (AECC)25.5 Summer Internshi p Compuls (AECC)2Soft Skill-1Soft Skill-2 Soft Skill-1Compulso ry Course (AECC)Compulso ry Course (AECC)Compulso ry Course (AECC)Compulso ry Course (AECC)Compulso ry Course (AECC)Internshi p ry Course (AECC)Internshi rent rent rent rent Soft Skill-3Internshi rent rent rent rent rent rent rent rent rentInternshi rent rent rent rent rent rent rent rent rentInternshi rent rent rent rent rent rent rent rent rentInternshi rent rent rent rent rent rent rent rentInternshi rent <br< td=""><td></td><td></td><td>-SEC-3</td><td></td><td>SEC-5</td><td></td><td>Course SEC-7</td><td></td><td>n</td><td></td><td>Compete</td><td></td><td></td></br<>			-SEC-3		SEC-5		Course SEC-7		n		Compete		
Enhancem ent Compulso ry Course 	1.7Ability	2	2.8 Ability	2	3.7 Ability	2	4.7	2	5.5	2	ney 5km		
ent Compulso ry Course (AECC)ent Compulsor y Course (AECC)ent Compulsor y Course (AECC)Enhance ment ory (AECC)Internshi p (Amagent AECC)Internshi p (AECC)Soft Skill-1Soft Skill- 2Soft Skill-3Course (AECC)Training (AECC)Internshi p1.8 Skill23.8 E.V.S-4.8 E.V.S2Enhancem ent - (Foundatio n Course)232322252621Total Credit Points	Enhancem		Enhancem		Enhancem		7Ability		Summer				
Compulso ry Course (AECC)Compulso ry Course (AECC)Compulso y Course (AECC)P Compuls oryP AlSoft Skill-1Soft Skill-2 2Soft Skill-3 Soft Skill-3Course (AECC) Soft Skill-4Training1.8 Skill2 Enhancem ent - (Foundatio n Course)3.8 E.V.S Fill-4.8 E.V.S2 Fill232322252621	ent Commuter		ent Communication		ent		Enhance		Internshi				
(AECC) Soft Skill-1 Soft Skill-2 (AECC) Soft Skill-3 Ory al 2 Soft Skill-3 Soft Skill-3 Course Training 1.8 Skill 2 Soft Skill-3 - 4.8 2 Enhancem ent - (Foundatio n Course) 3.8 E.V.S - 4.8 2 23 23 23 22 25 26 21	compuiso ry Course		rv Course		v Course		Compuls		p /Industri				
Soft Skill-1 Soft Skill-2 Soft Skill-3 Course (AECC) Soft Skill-4 Training Image: Course (AECC) Soft Skill-4 1.8 Skill 2 3.8 E.V.S - 4.8 2 E.V.S Image: Course (AECC) Soft Skill-4 Image: Course (AECC) Soft Skill-4 1.8 Skill 2 Sase E.V.S - 4.8 2 E.V.S Image: Course (AECC) Soft Skill-4 Image: Course (AECC) Soft Skill-4 <td>(AECC)</td> <td></td> <td>(AECC)</td> <td></td> <td>(AECC)</td> <td></td> <td>ory</td> <td></td> <td>al</td> <td></td> <td></td> <td></td> <td></td>	(AECC)		(AECC)		(AECC)		ory		al				
22AECC) Soft AECC) Soft 	Soft Skill-1		Soft Skill-		Soft Skill-3		Course		Training				
Image: solution of the second state of the second			2				(AECC)						
1.8 Skill 2 3.8 E.V.S - 4.8 2 Enhancem ent - (Foundatio n Course) 23 23 - 4.8 2 E.V.S 2 23 23 22 25 26 21							Skill-4						
Enhancem ent - (Foundatio n Course) 23 23 22 25 26 21 Total Credit Points	1.8 Skill	2			3.8 E.V.S	-	4.8	2					
(Foundatio n Course) 23 23 22 25 26 21 Total Credit Points	Enhancem ent -						E.V.S						
n Course) 23 23 22 25 26 21 Total Credit Points 140	(Foundatio												
23 23 22 25 26 21 Total Credit Points 140	n Course)												
		23		23	 	22 tal Cr	edit Points	25		26		21 140	

Credit Distribution for UG Programme in Chemistry

CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK UG Chemistry Semester I

Part	Courses	Subject	Code	Cr.	Hrs
Ι	Lang. – I	பொதுத்தமிழ் - I	230103101	3	6
II	Lang II	General English	231003101	3	4
	CC – 1	General Chemistry I	232203101	5	5
	CC – 2	Quantitative Inorganic Estimation and	232203102	2	2
Ш		Preparation - Lab		2	3
	EC – I	Allied Mathematics Paper – I / Animal	232003121/		
	[Any One]	Diversity	232303121	4	*6/4
		, , , , , , , , , , , , , , , , , , ,	*6hr for Maths / 4	hr for Zo	ology(I
	1		& II Sei	mester	0,7 ×
	EC I Lab	Animal Diversity, Genetics, Cell Biology	_	_	2
		and Biochemistry Lab			2
IV	SEC –I(NME)	Food Chemistry	234603122	2	2
IV	FC	Basic Principles of Chemistry	234403122	2	2
	AECC - 1	Soft Skill - I	236003101	2	2
	Total			23	30
_		SEMESTER II		-	_
Ι	LangI	பொதுத்தமிழ் - II	230103201	3	6
II	LangII	General English	231003201	3	4
	CC – 3	General Chemistry – II	232203201	5	5
	CC - 4	Qualitative Organic Analysis &	232203202	2	3
III		Preparation of Organic Compounds - Lab		_	-
	EC - II	Allie Mathematics Paper – II / Genetics,	232003221/	2	6/4
	Theory	Cell biology and Bio Chemistry	232303221	_	1 .
	1		*4 Cr for Maths/2	2Cr for Z	oology
	EC – II Lab	Animal Diversity, Genetics, Cell Biology	232303222	2	2
		and Biochemistry Lab		-	_
IV	SEC –II	Dairy Chemistry	234603222	2	2
	(NME)			-	_
	SEC - III	Cosmetics and Personal Grooming	234403222	2	2
	AECC –II	Soft Skill - II	236003201	2	2
				23	30
T	тт	SEMESTER III	220102201	2	
l	LangI	பொதுத்தமிழ் - 111	230103301	3	6
11	LangII	General English	231003301	3	4
	CC-5	General Chemistry III	232203301	5	5
III	CC - 6	Qualitative Inorganic Analysis - Lab	232203302	2	3
	EC - 3I	Allied – Physics Paper	232103321	3	4
	EC - 3P	Amed-Physics Practical I	232103322	1	<u> </u>
	SEC -IV	Entrepreneurial Skills in Chemistry	234403322	1	1
IV	SEC - V	Pesucide Unemistry	238203322	2	2
	AECC – III	SOIL SKIII -III	230003301	<u> </u>	<u> </u>
	EV3	Environmental Studies	234103301	1	1
				25	30

Part	Courses		Code	Cr.	Hrs
	•	SEMESTER IV			
Ι	Lang. – I	பொதுத்தமிழ் - IV	230103101	3	6
II	Lang II	General English	231003101	3	4
	CC – 7	General Chemistry - IV	232203401	4	4
	CC - 8	Physical Chemistry Practical - I	232203402	3	3
III	EC – 4 T	Allied – Physics Paper	232103421	3	4
	EC - 4P	Allied – Physics Practical - II	232103422	1	2
	SEC –VI	Instrumental Methods of Chemical Analysis	234403422	2	2
IV	SEC –VII	Forensic Science	238203422	2	2
	AECC- IV	Soft Skill – IV	236003401	2	2
	EVS	Environmental Studies	234103401	1	1
	Total			24	30
		SEMESTER V			
	CC – 9	Organic Chemistry – I	232203501	4	5
	CC - 10	Inorganic Chemistry – I	232203502	4	5
III	CC - 11	Physical Chemistry - I	232203503	4	5
	Core 12	Project with Viva voce	232203504	4	5
	EC - V	Biochemistry	232203505	4	5
	EC - VI	Industrial Chemistry	232203506	3	4
		Value Education	234303501	1	1
IV		Internship/Industrial Training (carried out in II year summer vacation) 30 hrs	232203507	2	
				25	30
	1	SEMESTER VI		1	1
	CC – 13	Organic Chemistry – II	232203601	4	5
	CC – 14	Inorganic Chemistry – II	232203602	3	4
ш	CC – 15 T	Physical Chemistry – II	232203603	4	5
111	CC – 15 P	Physical Chemistry Practical – II	232203604	2	3
	EC -7	Fundamentals of Spectroscopy	232203605	3	4
	EC - 8	Nano Science	232203606	2	4
IV	Processional competency skill enhancement course	Dye Chemistry	232203607	2	4
		Value Education	234303601	1	1
V		Extension Activity (outside college hrs)	232203608	1	
				22	30

	ALLIED - CHEMISTRY FOR PHYSICS										
Sem	Title of the Paper	SUB CODE	Hrs.	Cr.	Generic/Discipline Specific						
III	Allied Chemistry - I	232203321	4	3	EC 3 - Theory						
III	Chemistry Practical for Physical and Biological Science	232203322	2	1	EC 3 - Practical						
IV	Allied Chemistry - II	232203421	4	3	EC 4 - Theory						
IV	Chemistry Practical for Physical and Biological Chemistry	232203422	2	1	EC 4 - Practical						

	ALLIED – CHEMISTRY FOR ZOOLOGY									
Sem	Title of the Paper	SUB CODE	Hrs.	Cr.	Generic/Discipline Specific					
I	Chemistry for Biological Science I	232203121	4	3	EC 1 - Theory					
I	Chemistry Practical for Physical and Biological Science	232203122	2	1	EC 1 - Practical					
п	Chemistry for Biological Science – II	232203221	4	3	EC 2 - Theory					
п	Chemistry Practical for Physical and Biological Chemistry	232203222	2	1	EC 2 - Practical					

Title of t	he Course	GENER	AL CHE	MISTRY I	II				
Part		III							
Category	y Core 5	Year	II	Credits	5	5 Course			22222201
		Semester	· III			C	ode	23	2203301
Instruct	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total
per weer		4	1		5	25	75		100
			Learning	g Objective	s				
This cour	se aims to provide	e a compre	hensive k	nowledge	on I X-ray (liffrac	tion ofso	lids	
∠ fu	ndamentals of nu	clear chem	istry and	nuclear wa	ste man	ageme	nt	1145.	
≪ an	nlications of nucl	ear energy	istry and	nuclear wa	ste man	igenie			
æ ap ∝ bo	oic chamistry of 1	halo organi	a compo	unda nhana	al and of	har ar	ometical	oho	10
⊯ Da	sic chemistry of i	nantice of r	nt compo	nd alashala		lier al	omatical	20110	18.
æ pr	eparation and pro	perfies of p	phenois a	nd alcohols	•				No. of
UNIT			Deta	ils				Pe	riods for the Unit
Ι	Gaseous state Kinetic molecula kinetic gas equat molecules- avera average kinetic freedom and mo collision diamete Real gases: Dev Amagat's plots) pressure for diffe Waal's equation problems based of gases – critical p Van der waal's states-liquefactio concepts.	ar model of ion; The M ege, root m energy, la lecular bas r; mean fre viations fr ; compress erent gases a; Virial on equation bhenomena equation a n of gase	f a gas: p laxwell – ean squar w of equasis of heat e path an om ideal sibility f equation; ns of stat – isothe nd the cr s; numer	oostulates a Boltzmann re and mos uipartition at capacitie d viscosity l gas beha actor, Z, a ns of states Boyle te esfor real g rms of CO ritical states ical proble	nd deriv distribut t probab of ener; s. Collis of gases wiour, (and its for real emperatu gases, is 2 - conti ; law of ms invo	ation ion of le velo gy, de ion fr Andre variat gases re; N otherm nuity corre olving	from the speed of ocity and egrees of requency; ew's and ion with s-van der fumerical ns of real of state— sponding the core		15
Π	Liquid and Solid Properties of Liq Crystalline and anisotropy, meltin and shape; laws centre and axis classification of Bragg's equation centered cubic, ordination numb comparison of graphite;.numeric classification and	d State uids- Surfa amorphous ng point; is s of cryst s; Miller crystal sys n Packing face cen er in typic structure cal problem and nor l applicatic	ace tensio s – diffe somorphi allograph indices, tems; Bra in atom tered and cal struc e and ns involvin stoichion	n, viscosity rences - g sm, polymo y; symmet unit cells vais lattice ic solids - l hexagona tures - Na properties ng core con netric defe	y and the eometry prphism. try elen s and s; X – ra – simplal close acl, CsC of ncepts D ects-Liqu	ir app , isotr Cryst nents space ay diff e cub pack Cl, Zn diamo efects iid cr	lications. copy and als –size – plane, lattices; fraction – ic, body ing; Co- S, TiO2; ond and in solids systals –		15

III	Nuclear Chemistry: Natural radioactivity - α , β and γ rays; half-life period; Fajan–Soddy group displacement law; Geiger–Nattal rule; isotopes, isobars, isotones, mirror nuclei, iso diaphers; nuclear isomerism; radioactive decay series; magic numbers; units – Curie, Rutherford, Roentgen; nuclear stability - neutron- proton ratio; binding energy; packing fraction; mass defect. Simple calculations involving mass defect and B.E., decay constant and t1/2 and radioactive series. Isotopes – uses – tracers – determination of age of rocks by radiocarbon dating. (Problems to be worked out) Nuclear energy; nuclear fission and fusion – major nuclear reactors in India;radiation hazards, disposal of radioactive waste and safety measures.	15							
IV	 Halogen derivative Aliphatic halogen derivatives Nomenclature and classes of alkyl halides – isomerism, physical properties, Chemical reactions. Nucleophilic substitution reactions – SN1, SN2 and SNimechanisms with stereochemical aspects and effect of solvent. Di, Tri & Tetra Halogen derivatives: Nomenclature, classification, preparation, properties and applications. Aromatic halogen compounds Nomenclature, preparation, properties and uses Mechanism of nucleophilic aromatic substitution – benzyne intermediate. Aryl alkyl halides Nomenclature, benzyl chloride – preparation – preparation properties and uses Alcohols: Nomenclature, classification, preparation, properties, use; conversions – ascent and descent of series; test for hydroxyl groups. Oxidation of diols by periodic acid and lead tetra acetate. 	15							
V	Nomenclature; classification, Preparation from diazonium salts, cumene, Dow's process, Raching process; properties – acidic character and effect of substitution on acidity. Reactions – Fries, claisen rearrangement, Electrophilic substitution reactions, Reimer - Teimen, Kolbe, Schmidt, Gatermann synthesis, Libermann, nitro reaction, phthalein reaction. Resorcinol, quinol, picric acid – preparation, properties and uses. Aromatic alcohols Nomenclature, benzyl alcohol – methods of preparation – hydrolysis, reduction of benzaldehyde, Cannizzaro reaction, Grignard synthesis, physical properties, reactions – reaction with sodium, phosphorus pentachloride, thionyl chloride, acetic anhydride, hydrogen iodide, oxidation – substitution on the benzene nucleus, uses.	15							
	Course Outcomes								
Course	On completion of this course, students will;								
CO1	explain the kinetic properties of gases by using mathematical conce	ots.							
CO2	describe the physical properties of liquid and solids; identify various crystals with respect to its packing and apply the XRD method for crystructure determinations.	s types of ystal							
CO3	investigate the radioactivity, nuclear energy and it's production, also wastemanagement	investigate the radioactivity, nuclear energy and it's production, also the nuclear							

CO4	write the nomenclature, physical & chemical properties and basic mechanisms of haloorganic compounds and alcohols.
CO5	investigate the named organic reactions related to phenol; explain the preparation andproperties of aromatic alcohol including thiol.

	Text Books (Latest Editions)							
1	B.R. Puri, L.R. Sharma, M.S. Pathania; <i>Principles of Physical Chemistry</i> ,46 th edition, Vishal Publishing, 2020.							
2	B.R. Puri, L.R. Sharma and K.C. Kalia, <i>Principles of Inorganic Chemistry</i> , Milestone Publishers and Distributors, New Delhi, thirtieth edition, 2009.							
3	P.L. Soni and Mohan Katyal, <i>Textbook of Inorganic Chemistry</i> , SultanChand & amp; Sons, twentieth edition, 2006.							
4	M. K. Jain, S. C. Sharma, <i>Modern Organic Chemistry</i> , Vishal Publishing, fourth reprint, 2003.							
5	S.M. Mukherji, and S.P. Singh, <i>Reaction Mechanism in Organic Chemistry</i> , Macmillan India Ltd., third edition, 1994.							
References Books								
	(Latest editions, and the style as given below must be strictly adhered to)							
1	T. W. Graham Solomons, Organic Chemistry, John Wiley & amp; Sons, fifth edition, 1992.							
2	A. Carey Francis, <i>Organic Chemistry</i> , Tata McGraw-Hill Education Pvt.,Ltd.,New Delhi, seventh edition, 2009.							
3	I. L. Finar, Organic Chemistry, Wesley Longman Ltd, England, sixth edition, 1996.							
4	P. L. Soni, and H. M.Chawla - <i>Text Book of Organic Chemistry</i> , New Delhi,Sultan Chand & Sons, twenty ninth edition, 2007.							
5	J.D. Lee, Concise Inorganic Chemistry, Blackwell Science, fifth edition, 2005.							
	Web Resources							
1	MOOC components							
	https://nptel.ac.in/courses/104104101 Solid state chemistry							
2	https://nptel.ac.in/courses/103106071 Nuclear industries and safety							
3	https://nptel.ac.in/courses/104106119s Introduction to organic chemistry							

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	S	S	S	Μ	S	М		
CO2	Μ	S	S	S	Μ	S	S	Μ	Μ	М		
CO3	S	S	S	М	S	S	S	Μ	S	Μ		
CO4	S	S	S	S	S	S	S	Μ	Μ	Μ		
CO5	S	М	S	S	S	S	S	Μ	Μ	S		
			2 6	4 man a 1			Larr					

3 – Strong, 2 – Medium , 1 - Low

Mapping with Programme Specific Outcomes:

	1				
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	e Course	QUANTITATIVE INORGANIC ANALYSIS - LAB								
Part		III								
Category Core – 6		Year	II	Credits	2	C	ourse	222202202		
		Semester	• III			C	Code		252205502	
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
per week	per week		-	3	3	25	75		100	
			Learning	g Objective	es					
ی To c salts	levelop the skil	l on syster	natic anal	ysis of sim	ple inorg	ganic s	alts and	mix	tureof	
			Expe	riment						
Semi - Mi 1. Analysi bromid	cro Qualitative s of simple acid le, iodide, nitrat	e Analysis radicals: (e	Carbonate	, sulphide,	sulphate,	thiosu	ılphite, c	hlori	ide,	

- 2. Analysis of interfering acid radicals: Fluoride, oxalate, borate, phosphate, arsenate, arsenite.
- 3. Elimination of interfering acid radicals and Identifying the group of basic radicals
- 4. Analysis of basic radicals (group wise): Lead, copper, bismuth, cadmium, tin, antimony, iron, aluminium, arsenic, zinc,manganese, nickel, cobalt, calcium, strontium, barium, magnesium, ammonium
- 5. Analysis of a mixture I to VIII containing two cations and two anions (of which one is interfering type)

	Course Outcomes							
Course On completion of this course, students will;								
Outcomes								
CO1	acquire knowledge on the systematic analysis of Mixture of salts.							
CO2	identify the cations and anions in the unknown substance.							
CO3	identify the cations and anions in the soil and water and to test the quality of							
005	water.							
CO4	assess the role of common ion effect and solubility product							

References Books

V. Venkateswaran, R. Veeraswamy and A. R. Kulandivelu, Basic Principles ofPractical Chemistry, Sultan Chand & Sons, New Delhi, second edition, 1997.

Web Resources

https://www.vlab.co.in/broad-area-chemical-sciences

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	
CO1	S	S	S	S	S	S	S	М	S	Μ	
CO2	М	S	S	S	М	S	S	М	М	Μ	
CO3	S	S	S	М	S	S	S	М	S	Μ	
CO4	S	S	S	S	S	S	S	М	Μ	М	

3 – Strong, 2 – Medium , 1 - Low Mapping with Programme Specific Outcomes:

				0 0.000000000000	
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos					

Title of t	the Course	ENTRE	PRENEU	RIAL SKI	LLS IN	CHE	MISTRY	
Part		IV						
Categor	v SEC – IV	Year	II	Credits	1	(Course	234403322
T	, 220 1	Semeste	r III				Code	
Instruct	ional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al Total
per weer	Δ	1	-		1	25	75	100
			Learning	g Objective	es			
The cours	e aims at providi	ng training	g to					
æ de	evelop entreprene	ur skills i	n students					
es to	o provide hands o	on experies	nce to prej	pare and de	velop pr	oduct	ts develop	start ups
			Doto	ปล				NO. OI Poriods for
UNIT			Deta	115				the Unit
	Food Chemistry	7						
	Food adulteration	on-contam	ination o	f food ite	ems wit	h cl	av stones	
	waterand toxic cl	hemicals -	Common	adulterants.			5	
Ι	Food additives,	Natural a	and synthe	etic anti-ox	kidants,	glaziı	ng agents	3
	(hazardous effect	ct),food c	olourants,	Preservativ	ves, lea	venin	g agents,	
	Baking powder a	nd baking	soda, yea	st,MSG,vin	egar.			
	D							
т	Dyes Classification	Notural	unthatia d	voc and th	air abar	notori	tion	3
11	basicmethods an	natural, s	es of dvei	iyes and un	en chara	actern	sucs –	5
	Hands on Expended	rience I	es of dyen	15				
		1	C 1.4	1.1	CC (1 • 11•	
ш	Detection of add	ilterants il	1 IOOd Ite	ms like co	honov (, pep	per, chilli	3
	techniques Pren	aration of	Juliel, g	uash and I	felly Gi	ilkano	d cottage	
	cheese.	urution of	Juin, 54	ausii una s	eny, or	inan	i, conage	
	Hands on Expe	rience I						
** 7	Preparation of	products	like can	dles soan	detero	ents	cleaning	2
IV	nowder shampoos pain halm tooth paste/powde rand disinfectants in							3
	small scale.	s, puill or	, tootii	pusce, powe		u 101111		
	Hands on Expe	rience I						
	Extraction of oil	s from spi	ces and flo	owers.				
V	Testing of water	samples u	ising testir	ng kit.				3
	Dyeing – cotton	fabrics wi	th natural	and synthe	tic dyes			
	Printing – tie and	l dye, batil	κ.	-	-			

	Course Outcomes							
Cours	se	On completion of this course, students will;						
Outcor	nes							
CO1 identify adulterated food items by doing simple chemical tests.								
CO2		prepare cleaning products and become entrepreneurs						
CO3 educate others about adulteration and motivate them to become entrepre								
		Text Books (Latest Editions)						
George S & Muralidharan V, (2007) Fibre to Finished Fabric -		orge S & Muralidharan V, (2007) Fibre to Finished Fabric – A Simple						
¹ Approach, Publication Division, University of Madras, Chennai.								
2	Ap	paswamy G P, A Handbook on Printing and Dyeing of Textiles.						

References Books							
	(Latest editions, and the style as given below must be strictly adhered to)						
1	Shyam Jha, Rapid detection of food adulterants and contaminants(Theory and						
	Practice), Elsevier, e Book ISBN 9087128004289, 1 st Edition,2015						
	Web Source						
1	https://www.vlab.co.in/broad-area-chemical-sciences						

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М

3 – Strong, 2 – Medium , 1 - Low

Mapping with Programme Specific Outcomes:

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
Weightage	6	6	6	6	6
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of	of the Course	PESTICI	DE CHE	EMISTRY					
Part		IV							
Cateo	ory SEC V	Year	II	Credits	2	C	ourse	2383	203322
Categ	Jory SEC V	Semester	III	Cituits			ode	2302	203322
Instru	ictional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	ıl	Total
per w	еек	2	_		2	25	75		100
		•	Learning	g Objective	S				
This	course aims to provi	ding the st	udents						
Ľ	knowledge about th	ne various (types of p	pesticides an	nd their	toxicit	у.		
Ľ	to understand the a	ccumulatio	on of pest	icides in in	the form	n ofres	sidues and	l its a	nalysis.
Ľ	knowledge on choi	ce of alterr	nate and e	eco-friendly	pesticic	les.			
								Ν	lo. of
UNIT			Detail	S				Peri	iods for
								the	e Unit
	Introduction: Hist	tory of pe	esticides.	Chemistry	of Pe	sticide	s: Brief		
	introduction to clas	ses of pest	icides (C	hemical cla	ass, targe	ets), st	ructures,		
	chemical names, ph	ysical and	cnemical	properties.	tre in m	o ma ma o 1	a hinda		
	acultic species etc	Methods of	f analysis	of pesticid	ty III III es	ammai	is, dirus,		
	Insecticides Class	ification a	nd study	r of follow	ving ins	ecticid	es with		
I	respect to structur	re chemic	al name	e physical	nroner	ties of	chemical		6
	properties. synthesi	is, degrada	tion. me	tabolism. f	ormulat	ions. I	Mode of		
	action, uses, toxicity	y.	,	, -		, -			
	Organophosphates	and Pho	sphothio	nates: Ace	ephate,	Chlor	pyriphos,		
	Monocrotophos, an	nd parathie	on-methy	l. Organoc	hlorine	– En	dosulfan,		
	heptachlor; Carbam	ate: Cartap	hydroch	loride, Metl	nomyl, F	Propox	ur		
	Pesticides residue	es I: Intr	oduction-	- application	on of	agroch	emicals,		
Π	dissemination path	ways of	pesticide	s, causes	of pest	icide :	residues,		6
	remedies. Pesticide	s residues	in atmo	osphere- ei	ntry int	o atm	losphere,		
	Posticidos residuo	, effects off	ides resi	inents.	ator on	try in	to water		
	systems action and	s 1. resuc	aquatic e	nvironment	Pestici	des res	sidues in		
ш	soil. Entry into soil	. absorption	n, retentio	on and trans	sport in	soil. e	ffects on		6
	microorganism, so	oil condit	ion and	l fertility.	decon	npositi	on and		Ū
	degradation by clim	natic factors	and mic	roorganism		1			
	Pesticide Residues	effect and	l analysi	s: Effects o	of pestici	ides re	sidue on		
	human life, birds ar	nd animals-	routes for	or exposure	to pesti	cides, a	action of		
IV	pesticides on livin	g system.	Analysis	s of pestic	ides res	sidues-	sample		6
1,	preparation, extra	ction of	pesticid	es residue	es (soil	l, wa	ter and		U
	vegetables/fruits) si	mple meth	ods and s	schemes of	analysis	s, mult	1-residue		
	analysis. Bionesticidase Dhara	monos	actorto -	anallanta	Introduce	tion	tunos and		
	application (8- Do	flecen-1-ol	10-cis-17	epenents – -hexadecadi	enoic T	rimedlu	ivpes and ire Cue-		
V	lure, methyl eugenol,	N,N- Dietł	yl-m-tolu	amide, Dime	ethyl pht	halate,	Icaridin).		6
	Baits- Metaldehyde,	, Iron (II)	phosph	ate, Indoxa	carb, Z	inc P	hosphide,		
	Bromadiolone.								

	Course Outcomes							
Course On completion of this course, students will;								
Outcomes								
CO1	teach about the pesticides and their toxicity with respect to structure and category.							
CO2	explain the preparation and property of pesticides							
CO3	investigate the pesticide residues, prevention and care							
CO4	demonstrate the extraction and analytical methods of pesticide residues							
CO5	make awareness to the public on bio-pesticides							

	Text Books (Latest Editions)						
1	Handa SK. Principles of pesticide chemistry. Agrobios (India); 2012.						
2	Matolcsy G, Nádasy M, Andriska V. Pesticide chemistry. Elsevier; 1989.						
3	3 J. Miyamoto and P. C. Kearney Pesticide Chemistry Human Welfare and the Environment vol. IV Pesticide Residue and Formulation Chemistry, Pergamon press,1985.						
4	4 R. Cremlyn: Pesticides, John Wiley.						
References Books							
	(Latest editions, and the style as given below must be strictly adhered to)						
1	Roy N. K., Chemistry of Pesticides. CBS Publisher & Distributors PLtd; 1st Ed. (2010).						
2	Nollet L.M., Rathore H.S., Handbook of pesticides: methods of pesticide residues analysis. CRC press; 2016.						
3	Ellerbrock R.H., Pesticide Residues: Significance, Management and Analysis, 2005						
	Web Resources						

Ma	pping	with	Programme	Outcomes:
----	-------	------	-----------	------------------

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	S	S	S	Μ	S	М		
CO2	Μ	S	S	S	Μ	S	S	Μ	М	М		
CO3	S	S	S	Μ	S	S	S	Μ	S	М		
CO4	S	S	S	S	S	S	S	Μ	Μ	М		
CO5	S	М	S	S	S	S	S	М	М	S		
			3	_ Strong	$\mathbf{r}^2 - \mathbf{M}$	edium	1 - L ou	7				

3 – Strong, 2 – Medium, 1 - Low

Mapping with Programme Specific Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title o	of the Course	GENER	AL CHE	MISTRY I	V				
Part		III		-	_				
Categ	orv Core – 7	Year	II	Credits	4	C	ourse		232203401
Categ		Semester	r IV	Cicuits	-		ode		252205401
Instru	ctional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total
per wo	eek	3	1		4	25	75		100
			Learni	ing Objecti	ves				
This c	ourse aims to provi	de a comp	rehensive	knowledge	on				
Ľ	thermodynamic co	ncepts on	chemical	processes	and app	liedasp	ects.		
Ľ	thermo chemical ca	alculations							
Ľ	transition elements	s with refe	rence to p	periodic pro	operties	and gr	roupstudy	v of	transition
	metals.	turn of othe	ua aldahar	معالمه معل					
Æ	the organic chemis	try of ethe	rs, aldeny	des and kei	tones				
<u></u>	the organic chemis	ary of card	oxync aci	las					No. of Poriods
UNIT			Deta	ails					for the Unit
I	Thermodynamics ITerminology – Intensive, extensive variables, state, path functions; isolated, closed and open systems; isothermal, adiabatic, isobaric, isochoric, cyclic, reversible and irreversible processes; First law of thermodynamics – Concept and significance of heat (q), work (w), internal energy (E), 								
II	Thermodynamics Second Law of the randomness; Carr reversible and irr entropy changes of temperature, volum Free energy a Gibbs free energy, pressure and volum derivations and equations of state Diagram-application Third law of the thirdlaw - evaluation	II ermodynan not's cycl- reversible of an ideal ne and pre- and work Helmholt me, criteri applicatio ; Thermodyna on of abso law.	nics - Lin e; Conce processes gas and a ssure, entr function z free ener a for spor ons; Max lynamics amics - N lute entrop	nitations of pt of entr , entropy a van der V ropy and dis s - Need rgy - their v ntaneity; G twell relat of mixing Vernst heat pies from h	first lay opy, en of mixi Waals ga sorder. for free variation ibbs-Hel ionships of ideal theoren eat capad	w, spor tropy ng, ca as with energ with t mholtz s, the gases n; App city me	ntaneity a change lculation changes y function temperature z equation rmodynamics, Ellingh plications easurement	and for of in ons, ure, n – mic am of nts,	12

	General Characteristics of d-block elements	
III	Transition Elements - Electronic configuration - General periodic trend variable valency, oxidation states, stability of oxidation states, colour, magnetic properties, catalytic properties and tendency to form complexes. Comparative study of transition elements and non transition elements – comparison of II and III transition series with I transition series. Group study of Titanium, Vanadium, Chromium, Manganese, Iron, Cobalt, Nickeland Zinc groups	12
	Aldehydes and Ketones	
IV	Nomenclatue, structure and reactivity of aliphatic and aromatic aldehydes and ketones; general methods of preparation and physical properties. Nucleophilic addition reactions, base catalysed reactions with mechanism- Aldol, Cannizzaro's reaction, Perkin reaction, Benzoin condensation, Haloform reaction, Knoevenagel reaction. Oxidation of aldehydes. Baeyer - Villiger oxidation of ketones. Reduction: Clemmensen reduction, Wolf - Kishner reduction, Meerwein – Pondorf Verley reduction, reduction with LiAlH4 and NaBH4.	12
	Addition reactions of unsaturated carbonyl compounds: Michael addition.	
V	Carboxylic Acids : Nomenclature, structure, preparation and reactions of aliphatic and aromatic monocarboxylic acids. Physical properties, acidic nature, effect of substituent on acidic strength. HVZ reaction, Claisen ester condensation, Bouveault Blanc reduction, decarboxylation, Hunsdieckerreaction.Formic acid-reducing property. Reactions of dicarboxylic acids, hydroxy acids and unsaturated acids. Carboxylic acid Derivatives: Preparations of aliphatic and aromatic acid chlorides, esters, amides and anhydrides. Nucleophilic substitution reaction at the acyl carbon of acyl halide, anhydride, ester, amide. Schottan- Baumann reaction. Claisen condensation, Dieckmann and Reformatsky reactions, Hofmann bromamide degradation and Curtius rearrangement. Active methylene compounds: Keto – enol tautomerism. Preparation andsynthetic applications of diethyl malonate and ethyl acetoacetate Halogen substituted acids – nomenclature; preparation by direct halogenation, iodination from unsaturated acids, alkyl malonic acids Hydroxy acids – nomenclature; preparation from halo, amino, aldehydic and ketonic acids, ethylene glycol, aldol acetaldehyde; reactions – action of heat on α , β and γ hydroxy acids.	12

	Course Outcomes								
Course Outcomes	On completion of this course, students will;								
CO1	explain the terms and processes in thermodynamics; discuss the various laws of thermodynamics and thermo chemical calculations.								
CO2	discuss the second law of thermodynamics and its application to heat engine; discuss third law and its application on heat capacity measurement.								
CO3	investigate the chemistry of transition elements with respect to various periodic properties and group wise discussions.								
CO4	discuss the fundamental organic chemistry of ethers, epoxides and carbonyl compounds including named organic reactions.								
CO5	discuss the chemistry and named reactions related to carboxylic acids and their derivatives; discuss chemistry of active methylene compounds, halogen substituted acidsand hydroxyl acids.								

	Text Books (Latest Editions)							
1	B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, ShobanLal Nagin Chand and							
1	Co., thirty three edition, 1992.							
2	K. L. Kapoor, A Textbook of Physical chemistry, (volume-2 and 3), Macmillan, India Ltd,							
2	thirdedition, 2009.							
2	P.L. Soni and Mohan Katyal, Textbook of Inorganic Chemistry, SultanChand & Sons,							
3	twentieth edition, 2006.							
4	M. K. Jain, S. C. Sharma, Modern Organic Chemistry, VishalPublishing, fourth reprint, 2003.							
Ч	S.M. Mukherji, and S.P. Singh, Reaction Mechanism in OrganicChemistry, Macmillan India							
⁵ Ltd., third edition, 1994.								
	References Books							
	(Latest editions, and the style as given below must be strictly adhered to)							
1	Maron, S. H. and Prutton C. P. Principles of Physical Chemistry,4thed.; The Macmillan							
1	Company: Newyork,1972.							
2	Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS WilliamHeinemann: London, 1991.							
3	Gurudeep Raj, Advanced Inorganic Chemistry, 26thed.; GoelPublishing House: Meerut, 2001.							
4	Atkins, P.W. & Paula, J. Physical Chemistry, 10th ed.; OxfordUniversity Press:New York, 2014.							
5	Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 4 th ed;							
3	Addison Wesley Publishing Company: India, 1993.							
	Web Resources							
https:	//nptel.ac.in/courses/112102255 Thermodynamics							
https:	//nptel.ac.in/courses/104101136 Advanced transition metal chemistry							

https://nptel.ac.in/courses/104101136 Advanced transition metal chemistry

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	М	S	S	S	Μ	S	М
CO4	S	S	S	S	S	S	S	Μ	Μ	Μ
CO5	S	Μ	S	S	S	S	S	М	М	S

3 – Strong, 2 – Medium , 1 - Low

Mapping with Programme Specific Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Title of the	e Course	PHYSIC	CAL CHE	MISTRY I	PRACT	ICAL	- I	
Part		III						
Catagory	Core 8	Year	II	Credits	3	C	ourse	232203402
Category	Core o	Semeste	r IV		5	C	ode	232203402
Instruction	Instructional Hours per weekLectureTutorialLab PracticeTotal CIAExternal						l Total	
per week		-	-	3	3	25	75	100
			Learning	g Objective	s			
The course a	aims at providi	ng an und	erstanding	g of				
K	the laboratory of	experimen	ts in order	r to underst	and the	concep	tsof phys	ical
	changes in chei	mistry						
Ŕ	the rates of che	emical read	ctions					
Ŕ	colligative prop	perties and	l adsorptic	on isotherm				
			Expe	eriment				
Thermoche Determinatio	mistry on of heat of 1 n of heat of hyd	neutralisati	ion of a s opper sulph	trong acid ate.	by a str	ong ba	se.	
Electrocher	nistry – Cond	uctance n	neasurem	ents				
Determination	on of cell const	tant						
Determination	on of molar co	nductance	of strong	electrolyte				
Determination	on of dissociati	ion constan	nt of aceti	c acid				
Colorimetry Determination	y on of concentra	ation of co	pper sulpl	hate solutio	n			
Colligative	property							
Determination diphenyl as	on of molecular solvent	r weight of	f an organi	ic compoun	d by Ras	st meth	od using	naphthalene o
Adsorption Construc	ction of Freund	lich isothe	rm for the	adsorption	of acetic	c acid o	on activate	ed charcoal
			Course	e Outcome	5			
Course								

Course Outcomes	On completion of this course, students will;
CO1	describe the principles and methodology for the practical work
CO2	explain the procedure, data and methodology for the practical work.
CO3	apply the principles of electrochemistry, kinetics for carrying out the practical work.
CO4	demonstrate laboratory skills for safe handling of the equipment and chemicals

	References Books							
	(Latest editions, and the style as given below must be strictly adhered to)							
1	Sindhu, P.S. Practicals in Physical Chemistry, Macmillan India :New Delhi, 2005.							
2	Khosla, B. D.Garg, V. C.; Gulati, A.; Senior Practical PhysicalChemistry, R.Chand : New							
Ζ	Delhi, 2011.							
3	Gupta, Renu, Practical Physical Chemistry, 1st Ed.; New AgeInternational: New Delhi, 2017.							
	Web Resources							
1	https://www.vlab.co.in/broad-area-chemical-sciences							

	Mapping with Programme Outcomes:												
	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO10												
CO1	S	S	S	S	S	S	S	М	S	М			
CO2	М	S	S	S	М	S	S	М	М	М			
CO3	S	S	S	М	S	S	S	М	S	М			
CO4	S	S	S	S	S	S	S	М	М	М			

3 – Strong, 2 – Medium , 1 - Low

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of	Title of the Course INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS												
]	PART	IV			-								
Catego	\mathbf{v} SEC – IV	Year	•	II	Credits	2	С	ourse	2	34403422			
		Sem	ester	IV	. .		C	ode					
Instruct	tional Hours	Lectu	ire	Tutorial	Lab Practice	Total	CIA	Externa	al	Total			
per wee	R	2		-		2	25	75		100			
			(Objective	s of the cou	rse							
The course aims at providing an overall view of the													
\swarrow operation and troubleshooting of chemical instruments										of			
	ompounds	i allafytica		inques ai	iu itsappiie			llacteriza	uoi	1 01			
≪ th	eory of chron	natographi	c sep	aration a	nd								
🗷 th	eory of therm	o / electro	analy	ytical tec	hniques								
💉 st	oichiometry a	nd the rela	ted c	oncentra	tion terms								
				_						No. of			
UNIT				Det	ails					Periods for			
	Ovelitetive e		:4 . 4:-		ta of Amala					the Unit			
	Qualitative a	ind Quant		e Aspec	ts of Analy	VSIS Moloc	M;11;	molog M	r;11;				
	S.I UIIIIS, DIS	Molality	Mole	n iviass a	mu weight.	wioles,		Weight	and				
	Volume ppm	nonanty,	wity c	and Spec	ific Gravity	of Liqu	e Uy ide St	weight a	anu				
	Calculations	, ppu. Dei	isity c	ind Spee	ine Oravity	or Liqu	ius. 51		Ju y				
Ι	I Sampling evaluation of analytical data Errors Types of Errors									6			
	Accuracy Precision Minimization of Errors Significant Eiguros Mathada												
	of Expressi	ng Precisi	on• N	Jean M	edian Ave	erage D	eviatio	n Stand	ard				
	Deviation Coefficient of Variation Confidence Limits O. test F-test T.												
test The Least Square Method for Deriving Calibration plots													
	Atomic Abs	sorption S	Spect	roscopy:	Basic prin	nciples	of inst	rumentat	ion				
	(choice of s	ource, moi	nochr	omator,	detector, cl	noice of	flame	and Bur	ner				
тт	designs. Tec	chniques of	f atoı	nization	and sampl	e introd	uction	Method	of	6			
11	background	correction,	sour	ces of ch	emical inter	rferences	s and t	heir metl	nod	0			
	of removal.	Technique	es for	the qua	intitative es	stimatior	of tr	ace level	of				
	metal ions fr	om water s	sampl	es.									
	UV-Visible a	nd IR Sp	ectros	scopy	1		1	. 1 1	c				
	Origin of spe	ctra, intera	iction	of radia	tion with n	natter, fu	indam	ental law	sof				
	spetroscopy a	nd selectio	n rul	es, validi	ty of Beer-	Lambert	's law.						
	UV Visible	Spectrom	otru	Docio r	ringinlag	netrumo	ntation	(choice	of				
ш	source mo	nochromat	or a	nd detec	rtor) for	instrume	nd de	uble be	am	6			
111	instrument.	Basic prin	ciples	of quar	ntitative and	alvsis [,] e	stimati	on of me	etal	0			
	ions from a	aueous so	olution	n geom	etrical ison	ners ke	to-eno	l tautom	ers				
	Infrared St	ectroscop	v: B	asic prin	ciples of i	nstrume	ntatior	(choice	of				
	source, mo	nochromat	or&	detecto	r) for sin	ngle ar	nd do	uble be	am				
	instrument; s	sampling te	echnic	ques.	,	0							
	Thermal an	d Electro-	analy	ytical M	ethods of A	Analysis							
	TGA and DTA- Principle, Instrumentation, methods of obtaining												
	Thermograms, factors affecting TGA/DTA, Thermal analysis of silver												
IV	nitrate, calcium oxalate and calcium acetate DSC- Principle,									6			
	Instrumentation and applications.							0					
		tion 1	. d		where "	ainla '		antati	I				
	enectroanaly	Dorivotive	Jus:]	joiarogra	ipny - prin . Cualia Vi	cipie, 11	istrum	entation a	and				
	applications.	Derivative	: pola	rography	- Cyclic V	Juainme	u'y - pi	incipie.					

V	Separation and purification techniques Classification, principle, Factors affecting - Solvent Extraction – Liquid Liquid Extraction, Chromatography: Column, TLC, Paper, Gas, HPLC and Electrophoresis Principle Classification Choice of Adsorbents	6								
	Solvents, Preparation of Column, Elution Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms and Rf value.									
Course Outcomes										
Course	Irse On completion of this course, students will;									
Outcomes										
CO1	CO1 apply error analysis in the calibration and use of analytical instruments, explain theory, instrumentation and application of flame photometry and Atom Absorption spectrometry									
CO2	explain theory, instrumentation and application of UV visible and Infrared spectroscopy.									
CO3	able to discuss instrumentation, theory and applications of the electrochemicaltechniques	ermal and								
CO4	explain the use of chromatographic techniques in the separation and id of mixtures	entification								
CO5	explain preparation of solutions, stoichiometric calculations									

	RECOMMENDEDTEXT								
1	Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by G.H. Jeffery								
1	and others) 5th Ed., The English Language Book Society of Longman.								
2	R. Gopalan, P. S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry,								
	Sultan Chand, New Delhi, 2007								
3	Skoog, Holler and Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th								
	Indian Reprint (2017).								
4	R. Speyer, Thermal Analysis of Materials, CRC Press, 1993.								
5	R.A. Day and A.L. Underwood, Quantitative Analysis, 6thedn., Prentice Hall of India								
5	Private Ltd., New Delhi, 1993								
	REFERENCEBOOKS								
1	D. A. Skoog, D. M. West and F. J. Holler, Analytical Chemistry: An Introduction,								
	5thedn., Saunders college publishing, Philadelphia, 1998.								
2	Dash U N, Analytical Chemistry; Theory and Practice, Sultan Chand and sons								
	Educational Publishers, New Delhi, 2011.								
3	Christian, Gary D; Analytical Chemistry, 6th Ed., John Wiley & Sons, New York, 2004.								
4	Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods,								
	Elles Harwood Ltd. London								
5	G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative								
	Chemical Analysis, sixth edition PearsonEducation, 2000								
	Web Sources								
1	http://www.epa.gov/rpdweb00/docs/marlap/402-b-04-001b-14- final.pdf								
2	http://eric.ed.gov/?id=EJ386287								
3	http://www.sjsu.edu/faculty/watkins/diamag.htm								
4	http://www.britannica.com/EBchecked/topic/108875/separation- and-purification								
5	http://www.chemistry.co.nz/stoichiometry.htm								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	FOREN	SIC SCIE	ENCE						
PART		IV								
Catagor	SEC VII	Year	II	Credits	2	C	ourse	23	8203422	
Category		Semeste	r IV		2	C	ode	23	5203422	
Instructi	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
per week		2	_		2	25	75		100	
Objective	s of the course									
This cou	rse aims at giving	g an overa	ll view of							
« crime detection through analytical instruments										
🗷 forge	ry and its detection	on								
🗷 media	cal aspects involv	ved								
UNIT			No. (for	of Periods the Unit						
	Poisons									
Ι	Poisons - types living and the d Heavy metal co neutron activati		6							
	Treatment in ca									
	Crime Detection									
	Accidental expl									
II	in Sivakasi). Hu		6							
	RDX) - metal detector devices andother security measures for VVIP-									
	composition of									
	Forgery and C	ounterfer	ting	rand signa	turac	simula	utad and			
	traced forgeries	inheren	pes of ic	of forgers	$\frac{1}{2}$ metho	sinnuic de	writing			
	deliberately mo	dified u	n signs	or longery		us -	of type			
III	written letters		6							
	allow analysis									
	alloy analysis t									
	gold pullty in 2									
	Tracks and Tr									
	Tracks and tracks	auts ces - sma	ll tracks	and police	dogs -	foot	prints -			
	costing of foot	prints -res	idue print	s, walking p	battern o	r tyre	marks –			
137	miscellaneous tr	races and	tracks – gl	ass fracture	- tool n	narks -	paints -		6	
1 V	fibres - Analys	is of biol	logical su	bstances -	blood, s	semen	, saliva,		U	
	urine and hair	- Crani	al analysi	s (head an	d teeth)	DNA	Finger			
	printing for tissue identification in dismembered bodies - detecting									
	Medical Aspect	ts	netes and	racenorses.						
	Aids - causes ar their treatment									
V	spectrum - Gas chromatography-Arson -natural fires and arson -								6	
	burning characteristics and chemistry of combustible materials -								v	
	hallistics - small	isuon. Bal 1 arme -lai	horatory e	cs - classification - internal and terminal						
	detection of pov	vder residu	ie by chen	nical tests.		1 wası	ing and			

Course Outcomes								
Course	On completion of this course, students will;							
Outcomes								
CO1	learn about the Poisons - types and classification of poisons in the living and the							
	deadorganisms and also get information about Postmortem.							
CO2	get awareness on Human bombs, possible explosives (gelatin sticks and RDX) and							
	metal defector devices and other security measures for VVIP - composition of							
	bulletsand detecting powder burns							
CO3	detect the forgery documents, different types of forged signatures							
	have an idea about how to tracks and trace using police dogs, foot prints							
CO4	identification and gain the knowledge in analyzing biological substances - blood,							
04	semen, saliva, urine and hair - DNA Finger printing for tissue identification in							
	dismembered bodies							
COF	get the awareness on Aids - causes and prevention and also have an exposure on							
005	handling fire explodes.							

	Recommended Text								
1	SA Iqbal, M Liviu, Textbook of forensic chemistry, Discovery publishing house								
1	private limited, 2011.								
0	Kelly M. Elkins, Introduction to Forensic Chemistry, CRC Press, Taylor &								
2	Francis Group, 2019.								
2	Javed I. Khan, Thomas J. Kennedy, Donnell R. Christian, Jr., Basic principles of								
3	Forensic chemistry, Humana Press, first edition, 2012.								
4	Bapuly AK, (2006) Forensic Science – Its application in crime investigation, Paras								
4	Medical Publisher, Hyderabad.								
5	Sharma B.R., (2006) Scientific Criminal Investigation, Universal Law Publishing Co. Pvt.								
5	Ltd, New Delhi.								
	ReferenceBooks								
1	Richard Saferst in and Criminalistics-An Introduction to Forensic Science (College								
	Version), Sopfestein, Printice hall, eighth edition,2003								
2	Suzanne Bell, Forensic Chemistry, Pearson, second international edition, 2014.								
3	Jay Siegel, Forensic chemistry: Fundamentals and applications, Wiley-Blackwell, first								
	edition, 2015.								
4	Max M. Houck & Jay A. Segal, (2006) Fundamentals of ForensicScience, Elsevier								
	Academic press.								
5	Henry C. Lee, Timothy Palmbach, Marilyn T. Miller, (2006) HenryLee's Crime Scene								
	Book Elsevier Academic press.								
	Website source								
1	http://www.library.ucsb.edu/ist/03-spring/internet.html								
2	http://www.wonder howto.com/topic/forensic-science/								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	М	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

CO-PO Mapping (Course Articulation Matrix)

Title of	of the	e Course	ALLIED CHEMISTRY – I (for Physics Students)									
Part			III									
Categ	ory	EC – 3 Generic Elective	Year Semeste	YearIISemesterIII		Credits	3		Co Co	ourse ode	2	32203321
Instru per w	ictioi eek	nal Hours	Lecture	Τι	utorial	Lab Practice	Total	CI	[A	Extern	nal	Total
per w	CCK		4		-		4	2	5	75		100
			0	bje	ectives	of thecour	rse					
Ľ	basi	cs of atomic orbi	tals, chen	nica	al bond	s, hybridiz	ation					
Ľ	cone	cepts of thermody	ynamics a	ind	its app	lications.						
Ľ	Concepts of nuclear chemistry											
Ľ	Importance of chemical industries											
Ľ	Qua	litative and analy	tical met	hod	ls.							
UNIT	No. of Periods for the Unit										No. fo	of Periods r the Unit
-	Chei	mical Bonding:	Molecula	r O	Prbital	Theory -	bonding	, an	ntib	onding,		
	and	non-bonding or	bitals. M	[ole	cular o	orbital dia	grams f	or	Hye	drogen,		
	Heli	um, Nitrogen; dis	scussion of	of b	ond or	der and ma	gnetic p	rope	ertie	es.		
_	Nuc	lear Chemistry: 1	Fundame	ntal	partic	les - Isotoj	pes, Isol	bars	, Is	otones,		
I	and	Isomers - Diff	erences	betv	veen c	chemical r	eactions	an	d	nuclear		12
	reactions - group displacement law. Nuclear binding energy - mass defec									S defect		
	calculations. Nuclear fission and nuclear fusion - differences - Stellar											
	medicinal applications											
	Indi	istrial Chemistr	v									
	Fuels: Fuel gases: Natural gas, water gas, semi-water gas, carbureted											
п	wate	er gas, producer g	gas, CNC	6, L	PG, an	d oil gas ((manufa	ctur	ing	details		12
	not	required). Silico	ones: Syn	thes	sis, pro	operties, a	nd uses	of	sil	icones.		12
	Ferti	llizers: Urea, am	monium	suli	tate, po	otassium n	itrate, N	NPK	te	rtılızer,		
	supe	demontal Conce	e superpri	osp.	nate.	omistry						
	r un Hvb	ridization. Orbit	al overla	n l	hvbridi	zation an	d geom	etrv		f CH4		
	C2H	4. C2H2. and	C6H6.	Eleo	ctronic	effects:	Inductiv	ve e	effe	ct and		
	cons	equences on Ka	and Kb	of	organi	c acids an	d bases,	ele	ectro	omeric,		
II	meso	omeric, hyperco	onjugatio	n,	and	steric -	exampl	es.	R	eaction		12
	mecl	hanisms: Types o	of reaction	ns -	· aroma	aticity (Hu	ckel's ru	ıle)	- ai	romatic		
	elect	rophilic substi	tution;	nitr	ation,	halogena	tion, I	Frie	del-	Craft's		
	alky.	lation and ac	ylation.	He	eterocy	clic com	pounds:	P	repa	aration,		
	prop Tho	render of pyrrole a	and pyrid	Ine.	uilibri	0						
	The	modynamics and modynamics	Types of	тъці f s	vstem	a s reversil	ble and	1 i	rrev	versible		
	proc	esses, isotherm	al and	adi	iabatic	processe	s. and	sp	ont	aneous		
	processes, isomerina and adiabatic processes, and spontaneous processes. Statements of the first law and second law of thermodynamics									namics.		
	Carnot's cycle and efficiency of heat engine. Entropy and its											
IV	significance. Free energy change and its importance (no derivation).								vation).		12	
	Conditions for spontaneity in terms of entropy and Gibbs free energy.											
	Rela	tionship between	Gibbs fr	ee e	energy	and entrop	у.					
	Phas	e Equilibria: Pha	ase rule -	- de	tinitio	n of terms	111 it. A	ppli	icat	ions of		
	and i	its application to	a simple	vu-c ente	ectic sv	stem (Ph-4	ı - Kedd Ag)	cea	pna	ise rule		

Anal Introc V volur distil appli	ytical Chemistry duction to qualitative and quantitative analysis. Principles of netric analysis. Separation and purification techniques - extraction, lation, and crystallization. Chromatography: principle and cation of column, paper, and thin-layer chromatography.	12								
	Course Outcomes									
Course	Course On completion of this course, students will;									
Outcomes										
CO1	CO1 To gain in-depth knowledge about the theories of chemical bonding, nuclear reactions, and its applications.									
CO2	Evaluate the efficiencies and uses of various fuels and fertilizers.									
CO3	Explain the type of hybridization, electronic effect, and mechanism organic reactions.	involved in the								
CO4	Apply various thermodynamic principles, systems, and phase rule.									
CO5	Explain various methods to identify an appropriate method for th chemical components.	e separation of								

	Text Books						
1	V.Veeraiyan,TextbookofAncillaryChemistry;Highmountpublishinghouse,Chennai,first edition,2009.						
2	S. Vaithy an athan, Textbook of Ancillary Chemistry; Priya Publications, Karur, 2006						
3	S.ArunBahl,B.S.Bahl,AdvancedOrganicChemistry;S.ChandandCompany,NewDelhi,tw entythirdedition,2012.						
4	P.L.Soni,H.M.Chawla, TextBook of Organic Chemistry; Sultan Chand&sons, NewDelhi, twenty ninth edition,2007.						
	Reference Books						
1	P.L.Soni,MohanKatyal,TextbookofInorganicchemistry;SultanChandandCompany,New Delhi,twentiethedition,2007.						
2	B.R.Puri,L.R.Sharma,M.S.Pathania,TextbookPhysicalChemistry;VishalPublishingCo., NewDelhi,fortyfortyseventhedition,2018.						
3	B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition,2014.						

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

3 – Strong, 2 – Medium , 1 - Low

CO-PO Mapping (Course Articulation Matrix)

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the (Course	С	CHEMISTRY PRACTICAL FOR PHYSICAL AND								
		В	BIOLOGICAL SCIENCE								
		(f	or Zoology	Students	– I Year / I	Semeste	er;				
		fo	or Physics S	Students –	II Year / II	I Semest	er)				
Part		II	Ι								
Catagory	EC	2	Year	I/II	Credits	1	•	Course	22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Category	EC -	- 3	Semester	r I/III		1		Code	232	2203322	
Instruction	nal Hou	rs	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
F		1	-	-	2	2	25	75		100	
Prerequisit	es										
Objectives of the course			 This course aims to provide knowledge on the basics of preparation of solutions. principles and practical experience of volumetric analysis 								
Course Outline VOLUMETRIC ANALYSIS 1. Estimation of sodium hydroxide using standa carbonate. 2. Estimation of hydrochloric acid using standard 3. Estimation of ferrous sulphate using standard 4. Estimation of oxalic acid using standard ferrous 5. Estimation of potassium permanganate using hydroxide. 6. Estimation of magnesium using EDTA. 7. Estimation of ferrous ion using diphenyl amit				g standard standard o andard M od ferrous o using sta yl amine a	sodi oxalic ohr's sulph andarc as ind	um acid. salt. aate. Isodium icator.					
Reference BooksV.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principlesof Practical Chemistry; Sultan Chand & sons, Second edition, 1997.						ciplesof 7.					
Course Lea	rning C	Dutcom	nes (for M	apping w	ith POs an	d PSOs	5)				

On completion of the course the students should be able to

CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.

CO 2: design, carry out, record and interpret the results of volumetric titration.

CO 3: apply their skill in the analysis of water/hardness.

CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

CO /PO	PO1	PO2	PO3	PO4	PO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of the Course ALLIED CHEMISTRY – II (For Physics Student						ts)			
Part		III							
Category	EC - 4	Year	II	Credits	3	Co	ourse	23	32203421
Instructi	Generic Elective	Semeste	r IV	Lab	Total		ode		
per week		Lecture	Tutorial	Practice	Total	CIA	Exteri	nal	Total
-		4	-		4	25	75		100
		0	bjectives	of thecoul	rse				
🗷 Co-or	dination Chemistry	y and Wat	er Techno	ology					
∠ Carbo	hydrates and Amin	noacids							
∠ Basic	s and applications	of electroc	chemistry						
🗷 Basic	s and applications	of kinetics	s and catal	lysis					
	us photo chennear	phenomer	1011					No	of Periods
UNIT		No. of	Periods f	for the Un	it			fo	r the Unit
	Coordination Ch	emistry a	nd Water	Technolo	gv				
	Coordination Cher	nistry: De	finition of	f terms - II	UPAC N	lomenc	lature -		
	Werner's theory	- EAN	rule - P	auling's t	heory –	Postu	lates -		
	Applications to [Ni(CO)4]	, [Ni(CN)	4]2-, [Co(CN)6]3-	- Che	lation -		
I	Biological role of	f Haemog	lobin and	Chlorophy	ill (elem	entary	idea) –		12
	Applications in qu	ualitative a	and quant	itative anal	lysis.	of hord	noss of		
	water lechnology: Hardness of water, determination of hardness of water using EDTA method zeolite method. Purification techniques								
	BOD, COD.	T method,	, Zeonte n		mineatio		nques		
	Carbohydrates a	nd Amino	Acids						
	Carbohydrates: Cl	assificatio	n, prepara	ation, and	properti	es of g	glucose,		
	fructose, and sucrose. Discussion of open-chain ring structures of								
п	glucose and fructose. Glucose-fructose interconversion. Properties of								12
	starch and cellulo	se.		untion and		an of	1		
	nreparation of di	nentides 1	i - prepai	anon and	thod R	$\Delta n \Delta n a$	$d DN \Delta$		
	(elementary idea only)								
	Electrochemistry	/							
	Galvanic cells - S	Standard 1	nydrogen	electrode	- calom	el elec	trode -		
	standard electrode potentials - electrochemical series. Strong and								
III	weak electrolyte	s - ionic	c product	t of wate	r - pH	l, pKa	, pKb.		12
	Conductometric titrations - pH determination by colorimetric method								
	- butter solutions and its biological applications - electroplating - Nickel and chrome plating - Types of cells - fuel cells - corresion and								
	its prevention.								
	Kinetics and Cata	alysis							
	Order and molecu	larity. Inte	egrated rat	te expressi	on for I	and II	$(2A \rightarrow$		
	Products) order	reactions.	Pseudo-f	first-order	reaction	n, meth	nods of		
IV	determining the o	order of a	reaction	– Half-life	e period	-Cat	alysis -		12
	homogeneous an	d hetero	geneous,	catalyst i	ised in	Conta	rhoniug		
	equation	s. Concep		gy of acti		anu Ai	memus		
	Photochemistrv							<u> </u>	
	Grothus-Draper's	law and	Stark-Ei	nstein's la	aw of 1	photocl	nemical		
V	equivalence, Q	uantum	yield -	Hydroge	en-chlori	ide re	eaction.		12
	Phosphorescence,	fluor	rescence,	chemil	luminesc	cence,	and		
	photosensitization	n and phot	osynthesis	s (definitio	n with e	xample	es).		

	Course Outcomes							
Course	On completion of this course, students will;							
Outcomes								
CO1	Write the IUPAC name for complex, different theories to explain the bonding in							
	coordination compounds, and water technology.							
CO2	Explain the preparation and property of carbohydrate, amino acids, and nucleic							
02	acids.							
CO3	Apply/demonstrate the electrochemistry principles in corrosion, electroplating, and							
003	fuel cells.							
COA	Identify the reaction rate, order for chemical reaction, and explain the purpose of a							
04	catalyst.							
CO5	Outline the various types of photochemical processes.							

	Text Books						
1	V.Veeraiyan,TextbookofAncillaryChemistry;Highmountpublishinghouse,Chennai, firstedition,2009.						
2	S.Vaithyanathan, Textbook of Ancillary Chemistry; Priya Publications, Karur, 2006.						
3	ArunBahl,B.S.Bahl,AdvancedOrganicChemistry;S.ChandandCompany,NewDelhi,twe ntythirdedition,2012.						
4	P.L.Soni,H.M.Chawla,TextBookofOrganicChemistry;SultanChand&sons,NewDelhi,twent yninth edition,2007.						
	Reference Books						
1	P.L.Soni,MohanKatyal,TextbookofInorganicchemistry;SultanChandandCompany,New Delhi,twentiethedition,2007.						
2	R.Puri,L. R.Sharma ,M.S.Pathania, Tex tbook Physical Chemistry; VishalPublishing Co., NewDelhi, forty seventh edition,2018						
	Manning with Programma Outcomes:						

Mapping with Hogramme Outcomes.										
	PO 1	PO 2	PO 3	PO 4	PO 5					
CO1	3	3	3	3	3					
CO2	3	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
	3 – Str	ong, 2 – N	Iedium , 1	- Low						

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course			CHEMISTRY PRACTICAL FOR PHYSICAL AND BIOLOGICAL							
The of the course			SCIENCE							
			(for Zoology Students – I Year / II Semester :							
				for F	Physics Stu	dents – I	I Year	/ IV Sem	este	er)
Part			III		U					
Catalan	EC –	4 (Generic	Year	I/II	Credits	1	Course Code			222202422
Category	El	lective)	Semeste	er II/IV		1			232203422	
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	External T		Total	
per week			-	-	2	2	25	75		100
Objectives	of	This	course a	ims to pro	vide know	ledge or	1			
thecourse		• id	entificatio	on of organ	nic functio	onal grou	ıps			
		• di	fferent types of organic compounds with respect to their							
		pr	roperties.							
		• de	etermination of elements in organic compounds.							
		SYSTEM	ATIC ANALYSIS OF ORGANIC COMPOUNDS							
		The analy	sis must be carried out as follows:							
		(a) Funct	ional group tests [phenol, acids (mono & di) aromatic primary							
		amine	e, amides (mono & di), aldehydeand glucosel.							
		(h) Detec	ction of elements (N S Halogens)							
		(b) Dette	listinguish hotwaan alinhatia and anomaticaamnaunda							
(c) 10 dis		istinguish between aliphatic and aromaticcompounds.								
		(d) To di	stinguish – Saturated and unsaturated compounds.							
Reference Books V.Venka		ateswarai	n, R.Veera	isamy, A.I	R.Kuland	laivelu	, Basic	Prin	ciples	
		ofPract	cal Chemistry; Sultan Chand & sons, Second edition, 1997.							
Course Lea	arning	Outcome	s (for Ma	apping wi	th POs an	d PSOs)On			

completion of the course the students should be able to

CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.

CO 2: design, carry out, record and interpret the results of volumetric titration.

CO 3: apply their skill in the analysis of water/hardness.

CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	1 2	12	12
Weighted percentage of Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

CO /PO	PO1	PO2	PO3	PO4	PO5			
CO1	3	3	3	3	3			
CO2	3	3	3	3	3			
CO3	3	3	3	3	3			
CO4	3	3	3	3	3			
Weightage	12	12	12	12	12			
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0			
Level of Correlation between PO's and CO's								

CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK							
Programme	M.Sc.						
Programme Code	22						
Duration	2 years for PG						
Programme	PO1: Problem Solving Skill						
Outcomes	Apply knowledge of Management theories and Human						
(Pos)	Resource practices to solve business problems through						
(103)	research in Global context.						
	PO2: Decision Making Skill						
	Foster analytical and critical thinking abilities for data-based						
	decision-making						
	PO3: Ethical Value						
	Ability to incorporate quality ethical and legal value-based						
	nomity to incorporate quality, etilical and legal value-based						
	POA: Communication Skill						
	Ability to develop communication managerial and internersonal						
	alaille						
	SKIIIS. DOE: Individual and Team Leadership Skill						
	Conshility to load themselves and the team to achieve						
	capability to lead themselves and the team to achieve						
	organizational goals.						
	roo: Employability Skill						
	incuicate contemporary business practices to enhance						
	POZ. Entropropouriel Shill						
	PO7: Entrepreneurial Skill						
	Equip with skills and competencies to become an						
	entrepreneur.						
	PO8: Contribution to Society						
	Succeed in career endeavors and contribute significantly to						
	PO 9 Multicultural competence						
	Possess knowledge of the values and beliefs of multiple						
	cultures and						
	a global perspective.						
	PO 10: Moral and ethical awareness/reasoning						
	Ability to embrace moral/ethical values in conducting one's						
	IIIC. DSO1 Discoment						
Programme	To propage the students who will demonstrate wave that						
Specific	10 prepare the students who will demonstrate respectful						
Outcomes	line and apply						
(PSOs)	diverse frames of reference to decisions and actions.						
	PSO 2 - Entrepreneur						
	10 create effective entrepreneurs by enhancing their critical						
	thinking, problem solving, decision making and leadership skill						
	that will facilitate startups and high potential organizations.						
	PSU3 – Research and Development						
	Design and implement HR systems and practices grounded in						
	research that comply with employment laws, leading the						
	organization towards growth and development.						
	PSO4 – Contribution to Business World						
	To produce employable, ethical and innovative professionals to						
	sustain in the dynamic business world.						
	PSO 5 – Contribution to the Society						

	To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK

M.Sc Chemistry

Part		Course	Code	Cr.	Hrs
		SEMESTER I			
	CC – 1	Organic Reaction Mechanism – I	232204101	4	5
	CC – 2	Structure and Bonding in Inorganic	232204102	4	5
		Compounds		4	5
	CC – 3	Organic Chemistry Practical	232204103	4	5
Α	EC –I	Pharmaceutical Chemistry	232204104		
	(Generic/	Nano Materials and Nano Technology	232204105	3	5
	DS)				
	Elective - II	Electro Chemistry	232204106	3	5
		Molecular Spectroscopy	232204107	5	Ũ
в	SEC I	Preparation of Consumer products Lab	232204108	2	3
	AECC - 1	Chemistry in Consumer Products	232204109	2	2
	Total			22	30
	~~ (SEMESTER II			
	$\frac{CC-4}{1}$	Organic Reaction Mechanism II	232204201	4	5
	$\frac{CC-5}{CC-5}$	Physical Chemistry – I	232204202	4	5
	CC - 6	Inorganic Chemistry Practicals	232204203	4	5
A	EC - III	Crean Chamistry	232204204	3	5
		Bio Inorgania Chamistry	232204205		
	EC - IV	Bio morganic Chemistry	232204200	3	5
		Material Science	232204207		
В	SEC – II	Drugs and Cosmetics	232204208	2	3
	AECC - 2	Food Preservation	232204209	2	2
				22	30
		SEMESTER III	222204201	4	5
	CC = 7	C - 7 Organic Synthesis and Photochemistry		4	5
	CC = 8	Physical Chemistry Practical	232204302	4	5
Α		Pharmacognosy and Phytochemistry	232204303	4	5
	EC - V	Biomolecules and Heterocyclic Compounds	232204304	3	5
	Core	Industrial Chemistry	232204306	3	4
	SEC – III	Molecular spectroscopy	232204307	2	4
В	AECC – 3	Research Tools and Techniques in Chemistry	232204308	2	2
	Internship	Internship / Industrial Activity	232204309	2	_
	•	× ×		24	30
		SEMESTER IV	÷		
	CC - 10	Coordination Chemistry - II	232204401	4	5
	CC – 11	Physical Chemistry – II	232204402	4	5
	CC 12	Analytical Instrumentation Technique	222204402	4	5
Α	CC - 12	Practicals	232204403	4	5
	CC – 13	Project with Viva Voce	232204404	3	4
	EC VI	Polymer Chemistry	232204405	3	5
		Cheminformatics	232204406		
	SEC IV	Chemistry of Natural products and Organic	232204407	2	<u> </u>
В		spectroscopy	232207407	4	–
	AECC – 4	Interpretation and Identification of Chemical	232204408	2	2
		Compounds		-	-
\sim	T 1			-	

	Total		23	30				
* Internship will be carried out during the summer vacation of the first year and marks will be included								
in the Third Semester Marks Statement.								

Title of th	e Course	ORGAN	IC SYNT	THESIS AN	ND PHO	TOCH	IEMIST	RY
		Year	Year II a n		Course			
Category	Core - 7	Semeste	r III	Credits	4	C	ode	232204301
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al Total
рег week		4	1		5	25	75	100
			Learnin	g Objective	es	-		
🖉 To	understand the	molecular ad their rel	ar comple	exity of ca	rbon sk	eleton	s and the	ne presence of
Tunio Karataria	study various sy	nthetically	importan	t reagents fo	or any su	ccessf	ul organi	c synthesis.
∠ To	apply disconned	ction appr	oach and	identifying	suitable	synth	ons to e	ffect successful
org	anic synthesis.							
∠ To	learn the concep	ts of peric	yclic react	ion mechan	isms.			
× 10	gain the knowled	ige of pho	tochemica	ii organic re	actions			No. of Periods
UNIT			Deta	ils				for the Unit
Ι	Planning an O	rganic Sy	nthesis ar	nd Control	element	s: Pre	liminary	
	Planning – kno	wns and	unknowns	of the syn	nthetic s	system	studied,	
	analysis of the c	omplex a	nd interrela	ated carbon	framew	ork int	o simple	
	rational precurs	ors, retros	ynthetic a	nalysis, alte	ernate sy	ntheti	c routes,	
	key intermediat	es that we	ltornotivo	med, avail	lable sta	rting i Valor	naterials	15
	synthesis synt	hesis has	a of alternative methods. Linear Vs convergent					15
	regiospecific co	ontrol eler	nents. Use	e of protec	tive gro	ups. a	ctivating	
	groups and brid	lging elen	ents. Exa	mples on re	etrosyntl	netic a	pproach,	
	calculation of y	ield, advai	ntages of c	connvergent	synthes	is, syn	thesis of	
	stereochemistry	-controlled	l products.					
II	Organic Synth	etic Meth	odology:	Retrosynthe	etic anal	ysis; A	Alternate	
	synthetic route	s. Synthe	esis of o	organic me	ono an	d bifu	Inctional	
	compounds via	disconnec	tion appro	bach. Key i	ntermed	iates, a	available	
	starting materi	als and	resulting	yields of	alterna	tive i	nethods.	
	concepts of See	hach Prot	ection of l	hydroxyl c	arboxyl	carbor	npolung	15
	and amino gro	ups. Illus	stration of	f protection	n and d	leprote	ction in	15
	synthesis. Contr	rol element	nts: Regio	specific co	ntrol ele	ements	Use of	
	protective grow	ups, acti	vating g	roups, and	l bridg	ing e	lements.	
	Stereospecific	control el	ements. I	Functional	group a	alterati	ons and	
	transposition.							
III	Pericyclic Read	ctions: W	oodward]	Hoffmann 1	rules; Th	ne Mol	bius and	
	Huckel concep	t, FMO,	PMO me	ethod and		tion d	1agrams.	
	Cationic anio	nic and	yeloauulli 1 3-dine	on reaction	additions	$\begin{array}{ccc} \mathbf{I}, \mathbf{L}^{2+4} \\ \mathbf{C} \\ \mathbf{h} \\ \mathbf{C} \end{array}$	rj, [4+4, eletropic	
	reactions. : F	lectrocvel	ization a	nd ring of	opening	react	ions of	
	conjugated dier	nes and t	rienes. Si	gmatropic	rearrang	gement	s: (1,3),	15
	(1,5), (3,3) and	(5,5)-car	bon migra	tions, dege	nerate r	earran	gements.	
	Ionic sigmatro	opic rea	rangemen	ts. Group	trans	fer r	eactions.	
	Regioselectivity	, stereose	electivity	and perise	lectivity	in p	ericyclic	
	reactions.							
IV	Organic Photochemistry-I: Photochemical excitation: Experimental							
---------------------	---	------------------	--	--	--	--	--	--
	techniques; electronic transitions; Jablonskii diagrams; intersystem							
	crossings; energy transfer processes; Stern Volmer equation.							
	Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish	15						
reactions:								
V	Organic Photochemistry-I : Photochemistry of α B-unsaturated							
,	ketones: cis-trans isomerisation Photon energy transfer reactions Photon							
	eveloadditions. Photochemistry of aromatic compounds: photochemical							
	rearrangements: photo stationary state: di π mathema rearrangement:	15						
	Deaction of conjugated evaluation and to 2.4 disheard sharely							
	Reaction of conjugated cyclonexadienone to 3,4-dipnenyl phenois;							
Barton's reactions.								
Course Outcomes								
Course	On completion of this course, students will;							
Outcome								
CO1	To recall the basic principles of organic chemistry and to understa reactions of organic compounds with reaction mechanisms.	nd the various						
CO2	To understand the versatility of various special reagents and to correlate their							
02	reactivity with various reaction conditions.							
CO3	To implement the synthetic strategies in the preparation of va	arious organic						
	compounds.	0.11.1						
CO4	To predict the suitability of reaction conditions in the preparation	of tailor-made						
	To design and surthesize neural anomic some surds with the metho	delectes learnet						
CO5	during the course	uologies learnt						
	during the course							
	Text Books (Latest Editions)							
1 E	A Come and Conditions Advanced Owner's Chamistry 5thed Tete	M.C IIII						

1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Tata McGraw-Hill,
New York, 2003.
2. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and sons,
2007.
3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990.
4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press, Second Edition,
2016.
5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International Edition, 2011.
References Books
(Latest editions, and the style as given below must be strictly adhered to)
1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press, Great Britain, 2004.
3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn, Cambridge
University Press, Cambridge, 2007.
4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc, 1972.
5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic Reactions, New Age
International Publishers, New Delhi, 2012.
Web Resources
1.https://rushim.ru/books/praktikum/Monson.pdf

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	Μ	S	S	S	S	Μ
CO2	Μ	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	Μ	S	S	S	S	Μ	S	S	S	S
CO5	Μ	S	Μ	S	S	М	S	Μ	S	S

Mapping with Programme Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	COORD	INATIO	N CHEMIS	STRY –	Ι								
		Voor	п				011860							
Category	Core – 8	Semester	r III	Credits	4	C	Code		232204302					
Instruction	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total					
per week		4	1		5	25	75		100					
			Learnir	ng Objectiv	ves									
🗷 To	gain insights into	o the mode	rn theorie	s of bondin	g in coo	rdinati	on comp	oun	ds.					
∠ To	learn various me	ethods to d	etermine t	he stability	constant	s of co	mplexes	s.	turn aiti an a that					
∠ 10	taking place in t	construct		1 diagrams	and pred	lict the	e electro	nic	transitions that					
	describe various	s substituti	on and el	ectron trans	sfer mec	hanisti	c nathw	avs	of reactions in					
	nplexes.	substituti	on and en		sier mee	namsti	e puinw	uyb	of reactions in					
🔊 To	evaluate the read	ctions of o	ctahedral a	and square p	olanar co	mplex	es.							
									No. of					
UNIT			Det	ails					Periods for					
									the Unit					
	Modern theorie	es of coor	dination	compound	ls: Crys	tal fie	ld theor	у-						
	splitting of d	orbitals 11	1 octahed	ral, tetrah	edral ar	id squ	are pla	nar						
	symmetries - 1	neasureme	ent OI I	uDq - Ia	ctors al	for hi	g IUDO	- l						
т	low spin complex	series - cry	ystal field	stabilisation	n energy	101 III) - site s	election	allu s in	15					
1	spinels and anti	spinels -	Iahn Tell	er distortio	ns and	its cor	isequenc	ces	15					
	Molecular Orbita	al Theory a	and energy	v level diag	rams con	cept of	f Weak	and						
	strong fields, Si	gma and	pi bondir	ng in octał	nedral, s	quare	planar a	and						
	tetrahedral comp	lexes.	-	-			-							
	Spectral chara	cteristics	of comp	olexes: Te	rm state	es for	d ions	s -						
	characteristics of	d-d trans	d-d transitions - charge transfer spectra - selection rules											
Π	for electronic s	pectra - (Orgel cor	relation dia	agrams	- Suga	ano-Tan	abe	15					
	energy level dia	agrams - or alactror	nephelaux	tetic series	- Rach	ia para	ameter a	and						
	Stability and	Magnetic	nroperty	on parameter	compley	V06. 9	tability	of						
	complexes: Fact	tors affect	ing stabil	ity of cor	nplexes.	Ther	modvnai	mic						
	aspects of comp	lex format	ion, Stepv	vise and ov	verall for	matior	n consta	nts,						
	Stability correlat	ions, statis	stical facto	ors and che	late effe	ct, De	terminat	ion						
ш	of stability const	ant and co	mposition	of the con	nplexes:	Forma	tion cur	ves	15					
111	and Bjerrum's h	alf metho	d, Potenti	ometric me	ethod, S	pectrop	photome	tric	15					
	method, lon exe	change me	ethod, Pol	lorographic	method	and	Continu	ous						
	variation method													
	ouenching of orh	ital magne	tic mome	n couping		ignetic	mome	ms,						
	Kinetics and m	echanisms	of substi	tution rea	ctions of	^f octab	edral a	nd						
	square planar	complexe	s: Inert a	nd Labile	comple	xes; A	ssociati	ve,						
	Dissociative and	SNCB m	echanistic	pathways 1	for subst	itution	reaction	ns;						
IV	acid and base hy	drolysis of	octahedra	al complexe	es; Class	ificatio	on of me	etal	15					
••	ions based on the	e rate of w	ater repla	cement read	ction and	l their	correlati	on	15					
	to Crystal Field A	Activation	Energy; S	ubstitution	reaction	s in squ	uare plai	nar						
	effect in synthesis of square planar compounds. Kurnakov test													
	Electron Transfer reactions in octahedral complexes: Outer sphere													
	electron transfer	reactions a	and Marcu	is-Hush the	ory: inne	er sphe	re electi	on						
V	transfer reactions; nature of the bridging ligand in inner sphere electron 1													
	transfer reaction	ons. Pho	to-redox,	photo-su	bstitutio	n an	d pho	to-						
	isomerisation rea	ctions in c	omplexes	and their a	pplicatio	ns								

Course Outcomes						
Course	On completion of this course, Students will be able					
Outcomes						
CO1	Understand and comprehend various theories of coordination compounds.					
CO2	Understand the spectroscopic and magnetic properties of coordination complexes.					
CO3	Explain the stability of complexes and various experimental methods to determine					
003	the stability of complexes.					
COA	Predict the electronic transitions in a complex based on correlation diagrams and					
04	UV-visible spectral details.					
COS	Comprehend the kinetics and mechanism of substitution reactions in octahedral and					
005	square planar complexes.					

	Text Books (Latest Editions)						
1	J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of						
1	structure and reactivity, 4th Edition, Pearson Education Inc., 2006.						
2	G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc.,						
2	2008						
3	D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.						
4	B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.						
5	F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic						
5	Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.						
References Books							
	(Latest editions, and the style as given below must be strictly adhered to)						
1	Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA,						
1	1977.						
2	Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic Chemistry, 5th Edition,						
2	Oxford University Press, 2010.						
3	Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John Wiley, 2002,						
5	3rd edn.						
1	Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J.						
4	Alexander, John Wiley, 1994, 3rd edn.						
5	Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman and Co, London,						
5	2010.						
	Web Resources						
01							

01.https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-fall-2008/pages/syllabus/

	Mapping with Programme Outcomes:									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	Μ	S	S	S	S	М
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	Title of the Course PHYSICAL CHEMISTRY PRACTICAL								
Catagony	Core - 9	Year	II	Crodite	1	С	ourse	2	3770/303
Category		Semester	r III	Creans	4	C	ode ²		132204303
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Exterr	nal	Total
per week		-	-	5	5	25	75		100
Learning Objectives									

Solution To evaluate the order of the reaction, temperature coefficient, and activation energy of the reaction by following pseudo first order kinetics.

To construct the phase diagram of two component system forming congruent melting solid and find its eutectic temperatures and compositions.

Z To determine the kinetics of adsorption of oxalic acid on charcoal.

To develop the potential energy diagram of hydrogen ion, charge density distribution and Maxwell's speed distribution by computational calculation.

Experiments

Conductivity Experiments

1.Determination of equivalent conductance of a strong electrolyte & the verification of DHO equation.

2. Verification of Ostwald's Dilution Law & Determination of pKa of a weak acid.

3. Verification of Kohlrausch's Law for weak electrolytes.

4. Determination of solubility of a sparingly soluble salt.

5. Acid-base titration (strong acid and weak acid vs NaOH).

6. Precipitation titrations (mixture of halides only).

Kinetics

1. Study the kinetics of acid hydrolysis of an ester, determine the temperature coefficient and also the activation energy of the reaction.

2. Study the kinetics of the reaction between acetone and iodine in acidic medium by half-life method and determine the order with respect to iodine and acetone.

Phase diagram

Construction of phase diagram for a simple binary system

- 1. Naphthalene-phenanthrene
- 2. Benzophenone- diphenyl amine

Adsorption

Adsorption of oxalic acid on charcoal & determination of surface area (Freundlich isotherm only).

Course Outcomes

Course	On completion of this course, students will;
Outcomes	
CO1	To recall the principles associated with various physical chemistry experiments.
CO2	To scientifically plan and perform all the experiments.
CO3	To observe and record systematically the readings in all the experiments.
CO4	To calculate and process the experimentally measured values and compare with graphical data.
CO5	To interpret the experimental data scientifically to improve students' efficiency for societal developments.

	Text Books (Latest Editions)									
1.	B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva Books, New									
	Delhi, 2009.									
2.	Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S. Viswanathan Co. Pvt.,									
	1996.									
3.	V.D. Athawale and Parul Mathur, Experimental Physical Chemistry, New Age									
	International (P) Ltd., New Delhi, 2008.									
4.	E.G. Lewers, Computational Chemistry: Introduction to the Theory and Applications of									
	Molecular and Quantum Mechanics, 2 nd Ed., Springer, New York, 2011.									
References Books										
(Latest editions, and the style as given below must be strictly adhered to)										
1	J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.									
2	G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8th									
	edition, McGraw Hill, 2009.									
3	J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co.,									
	1987.									
4	Shailendra K Sinha, Physical Chemistry: A laboratory Manual, Narosa Publishing House									
	Pvt, Ltd., New Delhi, 2014.									
5	F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-Blackwell.									
	Web Resources									
1	https://web.iitd.ac.in/~nkurur/201516/Isem/cmp511/lab_handout_new.pdf									

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	Μ	S	S	S	S	Μ
CO2	Μ	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	M	S	M	S	S	М	S	M	S	S

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of	Title of the Course PHARMOCOGNOSY AND PHYTOCHEMISTRY									
Catego	ry EC – 5.1	Year Semeste	II er III	Credits	3	Course Code	2322	204304		
Instruc	tional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	External	Total		
per we		5	-		5	25	75	100		
			Lea	rning Obje	ectives					
æ]	To develop the uses.	knowled	ge of natu	ral product	s, biolog	gical funct	ions and ph	armacological		
<u>s</u>	o develop kno	wledge of	n primary	and second	arv meta	bolites and	l their source	es		
æ]	\swarrow To understand the concepts of isolation methods and separation of bioactive compounds.									
æ]	o provide the l	knowledg	e on selec	ted glycosic	les and r	narine drug	2S.			
æ 1	o familiarize t	he guideli	nes of WI	HO and diff	erent sar	npling tech	niques			
		8						No. of		
UNIT				Details				Periods for		
								the Unit		
	Pharmacogn	osy and	Standard	ization of	Herbal	drugs: In	troduction,			
	definition, de	velopmer	t classific	ation and S	Source of	of Drugs:	Biological,			
	mineral, mari	ne,and pl	ant tissue	cultures. St	udy of p	harmacog	nostic of a			
т	crude drug. H	Biosynthe	sis: Shikii	nic acid pa	athway a	and acetate	e pathway.	15		
1	Systematic ar	nalysis of	Crude di	rugs. Stan	dardizati	on of Her	rbal drugs.	15		
	WHO guideli	evaluation.								
	Determination									
	investigations	-General	chemical t	ests.						
	Extraction 7	Techniqu	es: Gene	eral metho	ds of	extraction,	, types –			
	maceration, I	Decoction	, percolat	ion, Immer	sion and	d soxhlet	extraction.			
II	Advanced tec	chniques	- counter	current, ste	eam_dist	illation, su	upercritical	15		
	gases, sonicat									
	choice of extr	action pro	ocess.	1 1	1.41		1			
	Drugs cont	aining	I erpenoi	as and	volatile	OllS: I	erpenoids:			
	classification	es, General								
III	Method of P	15								
	Geranium oil									
	taraxasterol S									
	Drugs contai	ning alka	aloids: Oc	currence. fi	inction of	of alkaloid	s in plants.			
	pharmaceutica	al applica	tions. Isol	lation, Preli	minary	Oualitativ	e tests and			
IV	general prope	rties. Gen	eral metho	ods of struc	tural el	ucidation.	Morphine,	15		
	Reserpine, p	apaverine	e - chen	nical prop	erties,	structure	and uses.			
	papaverine - s	tructure,	chemical p	properties a	nd uses.					
	Plant Glycos	sides and	Marine	drugs: Gl	ycosides	: Basic ri	ng system,			
	classification,	isolation	, properti	es, qualitati	ve analy	ysis. Pharm	nacological			
	activity of S	Senna gl	ycosides,	Cardiac g	lycoside	s-Digoxin,	digitoxin,			
	Steroidal saponins glycosides- Diosgenin, hecogenin. Plant pigments:									
V	Occurrence a	and generation	al methods	s of structur	e determ	nination, is	olation and	15		
	synthesis of q	uercetin a	ind cyanid	in chloride.	Marine	drugs -Sel	lected Drug			
	Molecules: C	Cardiovas	cular acti	ve substar	nces, C_{2}	ytotoxic c	compounds,			
	antimicrobial	compou	inds, ant	ibiotic cor	npounds	, Anti-in	flammatory			
	agents. Marin	e toxins.								

	Course Outcomes								
Course Outcomes		On completion of this course, students will be able							
CO	1	To recall the sources of natural medicines and analysis of crude drugs.							
CO2	2	To understand the methods of evaluation based on various parameters.							
CO3	3	To analyze the isolated drugs							
CO4	4	To apply various techniques to discover new alternative medicines.							
CO5 To evaluate the isolated drugs for various pharmacological activities									
	Text Books (Latest Editions)								
1	Gur	rdeep R Chatwal (2016), Organic chemistry of Natural products, Volume I&II, 5 th							
1	edit	tion, Himalaya publishing House.							
2	S.V	Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of Natural Products,							
	Rev	vised edition, Narosa Publishers.							
		References Books							
	(L	Latest editions, and the style as given below must be strictly adhered to)							
1	Jeffr	rey B. Harborne (2012), Phytochemical methods: A Guide to Modern Techniques of							
1	Plan	t Analysis, 4th edition, Indian reprint, Springer.							
2	Ash	utoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2 nd edition, New age							
2	inter	rnational (P) limited, New Delhi.							

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	Μ	S	S	S	S	Μ
CO2	М	S	S	S	S	Μ	S	S	S	S
CO3	S	S	М	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	М	S	М	S	S	Μ	S	М	S	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of	tle of the Course 5.2 BIOMOLECULES AND HETEROCYCLIC COM									
Catego	ory	EC - 5.2	Year Semester	II III	Credits	3	C C	ourse ode		232204305
Instruc	ctiona	al Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	al	Total
per we	ек		5	-		5	25	75		100
				Learnin	g Objectiv	es				
<u>ぼ</u> う ぼう 1	<u>Fo lea</u> Fo ex norma	arn the basic co splain various ones.	oncepts and of function	biologic	al importan arbohydrate	es, prote	omolec ins, nu	ules and cleic ac	nat ids,	ural products. steroids and
×]	Го un	derstand the fu	unctions of	alkaloids	and terpen	oids.				
×]	Γo elι	icidate the stru	icture deter	mination	of biomole	cules and	d natu	al produc	cts.	
×]	Γo ex	tract and const	truct the str	ucture of	new alkalo	ids and t	erpend	oids from	dif	ferent
UNIT	nethc	ids.		Deta	iils					No. of Periods for the Unit
Ι	Chemistry and metabolism of carbohydrates: Definition, classification and biological role of carbohydrates. onosaccharides: Linear and ring structures (Haworth formula) of ribose, glucose, fructose and mannose (structure determination not required), physical and chemical properties of glucose and fructose. Disaccharides: Ring structures (Haworth formula) – occurrence, physical and chemical properties of maltose, lactose and sucrose. Polysaccharides: Starch, glycogen and cellulose – structure and properties, glycolysis of carbohydrates.									15
П	Stero confi class stero chole of s cortis adrer	bids and Horn guration of ification, Diels ls, cholesterol- esterol from so ex hormones- sone and corti- naline and thyr	mones: Ste substituer s' hydrocar -occurrence qualene. He - androgen isol structu oxin.	eroids-Int nts. Die bon, biolo e, tests, p pormones- is and e re and f	roduction, o els' hydro ogical impo hysiologica Introduction estrogens, a unctions of	occurren carbon, ortance, c il activit n, classif adrenocc	ce, no stere colour y, bios fication ortical proidal	menclatur ochemistr reactions synthesis n, functio hormone hormone	re, ry, of of ons es- es-	15
III	Prot eand e	eins: Separation electrophoresistination and de	on and pures. Catabolis	rification of am ion. Bios	of proteins ino acids - ynthesis of	s – dialy transam proteins	vsis, g ination	el filtrati 1, oxidati	on ve	15
IV	deamination and decarboxylation. Biosynthesis of proteins. Nucleic acids: Role of nucleic acids. Amino acid metabolism and urea cycle. Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis								15	
V	otoligonucleotides.Fused Ring Heterocyclic Compounds: Benzofused five membered rings:Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline:Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.									
				Course	Outcomes					
Cour Outcor	se nes	On completio	on of this co	urse, stuc	lents will be	e able				
CO	CO1 To understand the basic concepts of biomolecules and natural products.								cts.	

CO2	To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.
CO3	To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.
CO4	To analyse and rationalise the structure and synthesis of heterocyclic compounds.
CO5	To develop the structure of biologically important heterocyclic compounds by different methods.

	Text Books (Latest Editions)								
1	T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Wiley VCH,								
	North America,2007.								
2	I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson Education Asia, 1975.								
3	V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing,								
	New Delhi,2000.								
4	M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co.,								
	Jalandhar, Delhi, 2014.								
5	V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi,2009.								
References Books									
	(Latest editions, and the style as given below must be strictly adhered to)								
1	I I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson Education Asia,2004.								
2	Pelletier, Chemistry of Alkaloids, Van Nostrand Reinhold Co, 2000.								
3	Shoppe, Chemistry of the steroids, Butterworthes, 1994.								
4	I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1								
	and Vol 10, Ukkaz Publications, Hyderabad, 2004.								
5	M. P. Singh. and H. Panda, Medicinal Herbs with their formulations, Daya Publishing								
	House, Delhi,2005.								
	Web Resources								
https	://www.organic-chemistry.org/								
https	:://www.studyorgo.com/summary.php								
https	:://www.clutchprep.com/organic-chemistry								

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	Μ	S	S	S	S	М		
CO2	Μ	S	S	S	S	Μ	S	S	S	S		
CO3	S	S	Μ	S	S	S	S	Μ	S	S		
CO4	Μ	S	S	S	S	Μ	S	S	S	S		
CO5	Μ	S	Μ	S	S	M	S	Μ	S	S		
			2 6	tmama 1	Mad		Low					

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	Sitle of the Course INDUSTRIAL CHEMISTRY									
					1					
	Core	Year	II			C	ourse	_		
Category	Industry	Semester	r III	Credits	3	C	ode	2	232204306	
T	Module			Lah	T-4-1					
Instructi	onal Hours	Lecture	Tutorial	Practice	1 otai	CIA	Extern	nal	al Total	
	•	4			4	25	75		100	
			Learnin	g Objective	es		·			
🗷 To	gain the knowled	dge in soli	d, liquid a	nd gaseous	fuel as a	resou	rce for e	nerg	y production	
an	d chemical produ	ction.								
🖉 To	\swarrow To develop innovative methods to produce soft water for industrial use and potable water									
at	cheaper cost.		((1	c					
	a To learn now to prepare industrial products such as sugar, termented and exprosive products in the chemical laboratory.									
	\propto To know the information about cament, chamical constituent and composition, polymers									
an	d their uses in var	rious engin	eering on	erations.	onstituei	n und	composi	,	porymens	
∠ To	learn about th	e industri	al materi	als,especial	ly fertil	izer 1	naterials	for	agricultural	
pro	oduction.			· 1	5				e	
			Deta	ils				No	o. of Periods	
UNIT			Deta					f	or the Unit	
	Industrial fuels				~ 1					
	Classification of	t tuels: so	lid, liquid	and gas. (Calorific	value	of fuels	5		
т	and its determination	tion. Solid fuels: Coal- types – properties and uses –							10	
l	and non-coking	mnous co	uid fuels:	Refining o	and anu f crude	petrol	, Coking	5	12	
	uses of fractions	Hvdrode	esulphuris	ation Gase	ous fue	ls -Na	tural gas			
	and gobar gas-pr	oduction.	compositio	on and uses.	. Gobar	electri	c cell.	,		
	Water treatmen	t	I I I		,					
	Introduction Sou	urces of wa	ater: Hard	ness of wat	ter-temp	orary	hardness	,		
	permanent hardn	ess. Disad	vantages o	of hard wate	er in dor	nestic,	industry	7		
п	and steam gene	eration (bo	oilers). Es	stimation o	of hardn	ess b	y EDTA		12	
	method. Water	softening	methods	Lime –	soda pi	rocess	, Zeolite	•		
	process, Ion-ex	change, I	Demineral	Isation -	deionis	ation	process	•		
	Removal of fi	meroorgan	1SIII —	Chiorinatio	on, Rev	erse	OSIIIOSIS,	,		
	Industries									
	Sugar Industry:	Manufacti	re of sug	var from m	olasses	and b	eetroot –	_		
	sugar industries	in India.	Fermenta	tion: Man	ufacture	of sp	irits and	l		
III	wines. Match ir	ndustries:	Manufact	ure – cher	nistry o	f ligh	ting and	L	12	
	pyrotechnics. Ex	xplosives:	Definitior	n – Classifie	cation –	Chara	cteristics	5		
	of explosives –	xplosives – Nitro cellulose, T.N.T. Picric acid, Gun Powder,								
	Cordite and Dyna	amite.								
	Polymerization:	T 6	D - 1 '				1			
	Polymerization:	Diagetica	rolymeriz	ation-Addi	uion and	1 CON	uensation			
τ	composition and	riasucs	the follow	ving. Polva	anu I athvlene	PVC	-Teflor	-	12	
I V	Bakelite Polves	ter. Ruhh	er_Natura	and synth	hetic Ru	ibher	Cement	,	14	
	Chemical Const	tituents a	nd Comr	osition of	Cemer	nt–Set	ting and	i		
	Hardening. Corro	osion: Typ	es of corro	osion (dry, v	wet).					

	Fertilizers Fertilizers: Plant nutrients–macro & micronutrients–Need for						
	fertilizers-Fertilizers type-Essential requirements-Classification of						
• •	fertilizers–simple and mixed fertilizers–Sources–Natural and Artificial	10					
V	tertilizers–Nitrogenous fertilizers–Ammonium nitrate, Ammonium	12					
	Super phosphate and triple super phosphate–Method of preparation &						
	uses. Potash fertilizers: KNO3 : method of preparation and uses. Mixed						
	fertilizers–preparation & uses. NPK ratio and its importance.						
	Course Outcomes						
Course Outcom	On completion of this course, students will be able						
CO1	To gain the knowledge about various types fuels (solid, liquid and coal, petrol, natural gas etc., their properties, refinement and uses.	l gaseous) like					
CO2	To gain the knowledge about hardness of water estimation and rem- and softening methods used in industry.	oval by EDTA					
CO3	To know about sugar, manufacture of sprits, composition and propert types of explosives.	ies of different					
CO4	To acquire knowledge of polymers, cement and corrosion in chemica	l industry.					
CO5	To know about the manufacturing, properties and application phosphorous and potash fertilizer.	of Nitrogen,					
	Text Books (Latest Editions)						
1. B E	.K.Sharma, Krishnaprakasam (2014), Industrial Chemistry Including Che ngineering, Media, Meerut	mical					
2. A	2. A. Heaton, An Introduction to Industrial Chemistry, Springer, 2019.						
3. B	N.Charabarthy – —Industrial Chemistry ^{II} , 1st Ed., Oxford and IBh Publis ewDelhi.	shing.					
4. D E	. A. Spera, Wind Turbine Technology: Fundamental concepts of Wind Tungineering, ASMEPress.	ırbine					
5. N h	orris shreve, r. And joseph a. Brink, jr. Chemical process industries, 4th e ll Kogakusha, ltd:1977.	ed.; Mc graw –					
	References Books						
	(Latest editions, and the style as given below must be strictly adhered	d to)					
1. B	.K. Sharma, Industrial Chemistry, 15th edition, Goel Publishing House, 2	006.					
2. P	C. Jain & Monica Jain, Engineering Chemistry, Dhanpat, Rai Publication	is, 2009. 3.					
D P	ublishing Co. 2017	v Isliai					
3. A	Heaton, An Introduction to Industrial Chemistry, Chapman & Hall Pub.	Со., 1996.					
4. P.	L. Soni, A Text Book of Inorganic Chemistry, Sultan Chand, 2013.						
5. S	Mohan, V. Arjunan and Sujin P. Jose, Principles of Materials Science, M	IJP Publishers,					
C	hennai, 2018.						
	Web Resources						
1. h	tps://www.lkouniv.ac.in/site/writereaddata/siteContent/20200413215950	0424ranvijay_					
	ngg_Fuels.pdf						
2. h	ups://sisi.sainyadama.ac.in/sisi_coursematerial/uploads/SU Y 1213.pdf tps://edurey.in/t/08513/Introduction_to_Sugar_Eermontation_Inductory.on/	1_M					
$\frac{5. \text{ II}}{4 \text{ h}}$	tps://unacademy.com/content/wp.content/unloads/sites/2/2022/10/33_F	Polymer-					
	otes.pdf	orymor-					
5. h	tps://www.agricorn.in/2023/03/bsc-ag-chemical-fertilizers.html						

				-						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	Μ	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	М	S	М	S	S	М	S	Μ	S	S

Mapping with Programme Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of tl	ne Course	MOLEC	CULAR S	PECTROS	COPY				
		Professi	onal Com	municatior	n Skill				
Category	SEC - III	Year	II	Credits	2	(Course	23	32204307
Les et en et		Semeste	r III	Lab	- T-4-1		Code		
ner week	onal Hours	Lecture	Tutorial	Practice	1 otai	CIA	Extern	nal	Total
		4			4	25	75		100
			Learning	g Objective	S				
🗷 To mo	understand the in lecules.	nfluence o	f rotation a	and vibratio	ons on th	e spe	ctra of the	pol	yatomic
ح To frag	study the princip gmentation patter	ole of Ram rns in Mas	an spectro	scopy, ESR copy.	spectro	scopy	y, EPR sp	ectro	oscopy and
ي To inte	highlight the sig	nificance of electron	of Franck- ic transitio	Condon prizons.	nciple to	o inter	pret the s	elect	tion rule,
ي To pat	interpret the first terns using corre	t and secor lation tech	nd order N iniques suc	MR spectra	a in term 7, HETC	s of s OR, I	plitting an NOESY.	nd co	oupling
∠ To	carry out the stru	uctural elu	cidation of	f molecules	using di	ifferen	nt spectra	l tec	hniques.
									No. of
UNIT			Deta	ils				P	eriods for
	Potational and	Domon S	noctrosco	nv. Potatio	nalenae	tra of	diatomic		the Unit
Ι	and polyatomic molecules. Intensities of rotational spectral lines, effect of isotopic substitution. Non-rigid rotators. Classical theory of the Raman effect, polarizability as a tensor, polarizability ellipsoids, quantum theory of the Raman effect, Pure rotational Raman spectra of linear and asymmetric top molecules, Stokes and anti-Stokes lines. Vibrational Raman spectra, Raman activity of vibrations, rule of mutual exclusion, rotational fine structure-O and S branches, Polarization of								
Π	Vibrational Spectroscopy:Vibrations of molecules, harmonic and anharmonic oscillators- vibrational energy expression, energy level diagram, vibrational wave functions and their symmetry, selection rules, expression for the energies of spectral lines, computation of intensities, hot bands, effect of isotopic substitution. Diatomic vibrating rotor, vibrational-rotational spectra of diatomic molecules, P, R branches, breakdown of the Born-Oppenheimer approximation. Vibrations of polyatomic molecules – symmetry properties, overtone and combination frequencies. Influence of rotation on vibrational spectra of polyatomic molecule, P, Q, R branches, parallel and perpendicular vibrations of linear and symmetric top molecules.12							12	
III	Electronic spectroscopy of dissociation and heir selection in photoelectron support (X properties of lase	ectroscopy f diatom predissoci rules. Pho pectra of (PS). Las er radiatior	v: Electr nic molection spectron toolectron simple sers: Lase n, example	onic Spectrules, Franctional Spectrosc molecules, Franction, s of simple	ctroscop nk-Conc , $n \rightarrow \pi^*$ opy: Ba , Xray populat laser sys	y:] lon trans asic p pho ion stems	Electronic principle itions and principles toelectron inversion	;	12

IV	NMR and ESR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR – COSY, NOESY. Introduction to 31P, 19F NMR. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g- tensors, zero/non-zero field splitting, Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules	12
V	 and morganic free fadicals. ESK spectra of magnetically dilute samples. Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in g- value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn 	12
	Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.	

	Course Outcomes							
Course	On completion of this course, students will;							
Outcomes								
CO1	To understand the importance of rotational and Raman spectroscopy.							
CO2	To apply the vibrational spectroscopic techniques to diatomic and polyatomic							
	molecules.							
CO2	To evaluate different electronic spectra of simple molecules using electronic							
003	spectroscopy.							
COA	To outline the NMR, ¹³ C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹ P,							
04	¹⁹ FNMR and ESR spectroscopic techniques.							
	To develop the knowledge on principle, instrumentation and structural elucidation							
CO5	of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy							
	techniques.							

	Text Books (Latest Editions)									
1.	C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed.,									
	Tata McGraw Hill, New Delhi, 2000.									
2.	R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic									
	Compounds, 6th Ed., John Wiley & Sons, New York, 2003.									

26th ACM – Department of Chemistry – 20.03.2024

3.	W. Kemp.	Applications	of Spectroscopy.	English Languag	e Book Society, 1987.
	···· · · · · · · · · · · · · · · · · ·	TT .	-j $-r$ $-r$ $-r$ $-r$ $-r$		

- 4. D. H. Williams and I. Fleming, *Spectroscopic Methods in Organic Chemistry*, 4th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 5. R. S. Drago, *Physical Methods in Chemistry*; Saunders: Philadelphia, 1992.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. P.W. Atkins and J. de Paula, *Physical Chemistry*, 7th Ed., Oxford University Press, Oxford, 2002.
- 2. I. N. Levine, *Molecular Spectroscopy*, John Wiley & Sons, New York, 1974.
- 3. A. Rahman, *Nuclear Magnetic Resonance-Basic Principles*, Springer-Verlag, New York, 1986.
- 4. K. Nakamoto, *Infrared and Raman Spectra of Inorganic and coordination Compounds*, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997.
- 5. J. A. Weil, J. R. Bolton and J. E. Wertz, *Electron Paramagnetic Resonance*; Wiley Interscience, 1994.

Web Resources

1. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>

2. https://www.digimat.in/nptel/courses/video/104106122/L14.html

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	Μ	S	S	S	S	Μ
CO2	Μ	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	Μ	S	S	S	S	Μ	S	S	S	S
CO5	Μ	S	Μ	S	S	Μ	S	Μ	S	S
			2 0			1	т			

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of t	he Course	RESEARCH TOOLS AND TECHNIQUES IN CHEMISTRY							
Category	AFCC = 3	Year	II	Credits	2	C	ourse	23	220/1308
Category	ALCC - 5	Semester	r III	Creatis	2	C	ode	23	2204300
Instructi	onal Hours	Lecture	Tutorial	Lab Prostico	Total	CIA	Extern	al	Total
per week	Σ.	2			2	25	75		100
		-	Learning	o Obiective	<u> </u>	23	15		100
\swarrow To understand the basic concepts in research methodology in chemical science									
∠ To	develop the know	wledge of	report wri	ting and fra	ming Re	search	proposa	ls.	
🗷 To	gain the knowled	dge of abo	ut collecti	ng and proc	essing v	arious	data type	es.	
🗷 To	understand the c	oncept of s	separation	and purific	ation tec	hnique	es in chei	nical	L
co	mpounds.								
🖉 To	discuss different	types of c	haracteriz	ation techni	iques and	d their	uses.		
UNIT			Deta	ils					
	Research Basic	es: Basics	of scienti	fic research	, resear	ch pro	cess and		
_	steps involved, Hypothesis, Research proposals and aspects, literature								6
I	survey, sources	of information	ation, revi	ew. Ethical	issues a	and int	ellectual		U
	property rights								
	Scientific Rep	ort Writi	ng and l	Publication	Proces	ss: Wi	riting of		
п	research report and synopsis (steps involved), paper writing (steps								6
11	involved), review writing, report preparation, publication process,								-
	selection of jour	mais, citati	on index,	impact fact	or, n-ind		11 42	-	
	Data Collectio	on and l	Processing	g Data t	ypes al	nd co	llection:		
ш	types stops in	quantitativ	e, uata pr	a comple		ysis. Sö duanta	amping.		6
	limitations	ivolveu in	sampin	g, sample	512C, a	uvanta	ges and		
	Analytical tool	and Tech	niques					+	
	Separation and	purificatio	on technic	mes: Cry	stallizati	on di	stillation		
	techniques (si	mple di	stillation.	steam of	distillatio	on. fi	ractional		
IV	distillation). Sol	vent extra	ction.			, -			6
	Chromatograph	y: Princi	ples and	applicati	ons of	Thi	n layer		
	chromatography	, Column	- chromatog	graphy, Gas	chroma	tograp	hy.		
	Material chara	cterizatio	n and An	alysis:					6
V	Basic principles	and applic	cations of	SEM, TEM	. AFM a	and HP	LC.		U

Course Outcomes							
Course Outcomes	On completion of this course, students will be able;						
CO1	To understand and comprehend the basics in research methodology and applying them in research/ project work.						
CO2	To gain the knowledge of scientific research writing and publication process.						
CO3	To develop your knowledge and skills to lead, coordinate, and support data collection, processing and sample analysis.						
CO4	To acquire knowledge on the qualitative analysis of separation of binary mixture of chemical compounds and purification techniques.						
CO5	To know the basic principles and applications of different physicochemical techniques.						

Text Books (Latest Editions)							
1. Kumar, R., Research Methodology - A Step-By-Step Guide for Beginners, Pearson Education, Delhi (2006).							
2. Montgomery, D. C., Design & Analysis of Experiments, 5th Ed., Wiley India (2007).							
3. Kothari, C. K., Research Methodology-Methods and Techniques, 2nd Ed., New Age International, New Delhi.							
4. Skoog D. A., and West D.M., Principles of Instrumental Analysis, East West Press, New Delhi.							
5. Willard H., Merit and Dean J. A., Instrumental Methods of Analysis, East west press, New Delhi.							
Reference Books							
1. Gurdeep Chatwal, S.K. Anand, Instrumental methods of Chemical analysis, Nirmalaya publication 2013.							
2. Drago, R. S., Physical Methods for Chemists, Saunders Company (1999).							
3. Aruldas, G., Molecular Structure and Spectroscopy, 2nd Ed., Prentice Hall India (2001).							
4. Igwenagu C. Fundamentals of research methodology and data collection. LAP Lambert Academic Publishing: 2016							
5. Kothari CR. Research methodology: Methods and techniques. New Age International: 2004.							
Web Resources							
https://ccsuniversity.ac.in/bridgelibrary/pdf/MPhil%20Stats%20Research%20Methodology-							
Part1.pdf							
https://mrcet.com/downloads/digital_notes/CSE/Mtech/I%20Year/RESEARCH%20METHODL							
OGY.pdf							
http://shvaiko.ru/wp-content/uploads/2010/02/Analytical-Techniques-Julia-CDrees-Alan-HB							
Wu.pdf							
https://secwww.jhuapl.edu/techdigest/content/techdigest/pdf/V06-N03/06-03-Charles.pdf							

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	Μ	S	S	S	S	Μ		
CO2	Μ	S	S	S	S	Μ	S	S	S	S		
CO3	S	S	Μ	S	S	S	S	Μ	S	S		
CO4	Μ	S	S	S	S	Μ	S	S	S	S		
CO5	Μ	S	Μ	S	S	Μ	S	Μ	S	S		
005	141	5	141	5	5	111	5	111	5	5		

Mapping with Programme Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Core SubjectINTERNSHIP / INDUSTRIAL ACTIVITYCode:232204309

SEMESTER III

Credit 2

Preamble:

To give Exposure to real world experience.

The Students will undergo minimum 7 days of summer internship/industrial activity training in subject related organization after their second semester for PG and Fourth semester for UG examinations (Summer Vacation).

The student will be allotted a faculty for guiding the internship/industrial activity. After the completion of the internship/industrial activity, he/she has to document the work, and submit the report along with the Certificate from the concern organization (2 copies – one to the Controller's Office, one to the Department Library)

The External viva voce examination will be conducted on or before last working day of the Third semester for PG and Fifth semester for UG.

	Internal	External	Total
Internship Report	15	50	65
Viva	10	25	35
Total	25	75	100

Title of	Title of the Course COORDINATION CHEMISTRY – II								
					T				
Categor	y Core - 10	Year Semester	II IV	Credits	4	Co Co	ourse ode	23	32204401
Instruct	ional Hours k	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	1	Total
per wee		5	-		5	25	75		100
			Learnir	ng Objectiv	ves				
K T	o recognize the fu	ndamental o	concepts a	and structur	ral aspec	ts of o	rganometa	allic	compounds.
	o learn reactions o	t organome	stallic con	npounds an	d their c	atalyti	c behavio	ur.	nia taala
	o understand the s	tructure and	ure of co	in coordin	compour	nplaye	ng spectro	oscoj	pic tools.
× T	o evaluate the spec	etral charact	teristics c	f selected of	complexe	npieze s			
	o e valuate the spec			n selected (ompiex				No. of
UNIT			Deta	ails]	Periods for the Unit
	Chemistry of	organon	netallic	compoun	ds: C	lassifi	cation	of	
	organometallic co	mpounds b	ased on 1	M-C bond	– 18 and	l 16 el	ectron rul	e;	
	Bonding in meta	al – olefin	complex	xes (exam	ple: Zie	se's sa	alt), meta	1-	
	acetylene and me	tal-allyl cor	nplexes;	Metal-cycl	opentadi	enyl c	omplexes	-	
	Examples and M	MO approa	ich to b	onding in	metalle	ocenes	; fluxion	al	
Ι	isomerism. Metal	– carbonyl	complexe	es: MO dia	gram of (CO; St	ructure ar	ıd	15
	bonding – bondii	ng modes,	MO appı	roach of M	I-CO bo	nding,	π-accept	or	
	nature of carbo	nyl group,	synergi	stic effect	(stabili	zation	of low	er	
	oxidation states (of metals);	Carbony	I clusters:	Low nu	clearit	y and hig	gn m	
	electron pair theor	ry or Wade'	– Suuc 's rule	luies based	u on po	Tyneur	al skelett	,11	
	Reactions and c	atalysis of	° organo	metallic c	ompoun	ds: R	eactions	of	
	organometallic co	ompounds:	Oxidativ	e addition,	reductiv	ve elir	nination (ά	
	and β elimination	is), migrato	ry inserti	on reaction	n and me	etathes	is reaction	n.	
п	Organo-metallic c	atalysis: H	ydrogena	tion of olef	ïns (Wil	kinson	's catalyst),	15
	hydroformylation	of olefin	s using	cobalt or	rhodiur	n cata	alysts (ox	0	15
	process), oxidatio	n of olefin	(Wacker	process), o	olefin isc	omerisa	tion, wat	er	
	gas shift reactio	n, cyclo-ol	ligomeris	ation of a	acetylene	es usir	ng Reppe	'S	
	Latarysis, Wonson	$\frac{100 \text{ process.}}{0 \text{ sconv} - 1 \cdot 1}$	IR spectra	osconv. Eff	fect of co	ording	ation on th		
	stretching frequen	cv-sulphate	o. carbona	ato, sulphite	c c c c c c c c c c	nitro. t	hiocvanat	0.	
	cyano, thiourea,	yl							
III	compounds. NMR spectroscopy- Introduction, applications of 1H, 15N,								15
	19F, 31P-NMR spectroscopy in structural identification of inorganic								
	complexes, fluxi	onal mole	cules, qu	ıadrupolar	nuclei-	effect	in NM	R	
	spectroscopy.								
	Inorganic spect	troscopy-II	: Introd	luctory te	rminolog	gies:	g and	A	
	Applications of F	SP to coor	dination	compound	s with o	ung g	g and A	1;	
	one unpaired elec	$rac{10}{r}$ trons – hvi	uniation perfine ai	nd seconda	ry hypei	fine si	litting ar	ui nd	
	Kramer's doublet	s: ESR spe	ectra of	V(II). Mn(II). Fe(I	I). Co	(II). Ni(II).	
IV	Cu(II) complexe	es, bis(sali	icylaldim	ine)copper	(II) and	l [(N	H ₃) ₅ Co-O	2-	15
	$Co(NH_3)_5]^{5+}$ Mos	sbauer spec	ctroscopy	r – Mossba	uer effe	ct, Rec	coil energ	у,	
	Mossbauer active	nuclei, Do	ppler shi	ft, Isomer	shift, qu	adrupo	ole splittir	ıg	
	and magnetic inte	ractions. A	pplicatior	ns of Mössl	bauer spe	ectra to	Fe and S	n	
	compounds.								

V Photo Electron Spectroscopy: Theory, Types, origin of fine structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N_2 , O_2) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H ₂ O, CO ₂ , CH ₄ , NH ₃) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques	5

Course Outcomes							
Cour Outcor	se On completion of this course, students will be able;						
CO	Understand and apply 18 and 16 electron rule for organometallic compounds						
	Understand the structure and bonding in olefin, allyl, cyclopentadienyl and						
	carbonyl containing organometallic compounds						
CO.	3 Understand the reactions of organometallic compounds and apply them in						
CO4	understanding the catalytic cycles						
	Identify / predict the structure of coordination complexes using spectroscopic tools						
CO	such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to						
	interpret the structure of molecules by various spectral techniques.						
	Text Books (Latest Editions)						
1	J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of						
1	structure and reactivity, 4th Edition, Pearson Education Inc., 2006						
2	G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc.,						
² 2008							
3	D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.						
4	B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and						
-	Applications, University Press, 2013.						
5	F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic						
5	Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.						
	References Books						
	(Latest editions, and the style as given below must be strictly adhered to)						
1	Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000.						
2	P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal						
	Chemistry: Fundamentals and Applications, 1 st edition, Springer-Verlag Berlin						
	Heidelberg, 2011.						
3	Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander.						
John Wiley, 1994, 3rd edn.							
4	K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976.						
5	R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.						
	Web Resources						
1. https	://archive.nptel.ac.in/courses/104/101/104101100/						

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10		
CO1	S	S	S	S	Μ	S	S	S	S	Μ		
CO2	Μ	S	S	S	S	Μ	S	S	S	S		
CO3	S	S	Μ	S	S	S	S	Μ	S	S		
CO4	Μ	S	S	S	S	Μ	S	S	S	S		
CO5	Μ	S	Μ	S	S	Μ	S	Μ	S	S		
				-			_					

Mapping with Programme Outcomes:

Mapping with Programme Specific Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title o	of the Course	PHYSIC	AL CHE	MISTRY-I	I							
		Veen	II	[C						
Categ	ory Core - 11	Semester	II IV	Credits	4		ode	2	232204402			
Instru	ctional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total			
per we	еек	4	1		5	25	75		100			
			Learnin	g Objectiv	es		•					
Ŕ	To understand the	essential c	haracteris	stics of wa	ve funct	ions a	nd need	for	the quantum			
	mechanics.											
Æ	To know the import	ance of qu	antum me	echanical m	odels of	particl	le in a bo	x, r	igid rotor and			
	harmonic oscillator.			1	1 1 4	•						
×.	To apply the quantu	m mechani	les to hyd	rogen and p	olyelect	ronic s	ystems					
× ~	To familiarize the system	ymmetry in	molecule	es and pred	let the pe	oint gro	oups.	tha	0.411			
Æ	To predict the vibra	uonai mou	es, nybrid	inzation usir	ig në con	icepts	of group	uneo	ory. No of D omioda			
UNIT			Detai	ils				Г	for the Unit			
	Introduction of O	uantum M	echanics	: Wave par	ticle dua	lity. U	Incertaint	v	for the enit			
	principle, Particle	wave and	Schrodin	ger wave e	equation,	wave	function	, 1,				
	properties of wave	e function.	Properti	es of wav	e function	on, N	ormalized	1,				
T	Orthogonal, ortho	normal, E	igen val	lues, Eiger	n functi	ions,	Hermitia	n	15			
I	properties of opera	ators. Intro	duction	to quantum	n mecha	nics-b	lack bod	y	15			
	radiation, photoele	ctric effec	t, hydrog	gen spectru	um. Nee	ed for	quantui	n				
	mechanics, Postulat	es of Quar	ntum Mec	chanics, Sch	nrodinger	r wave	e equation	1,				
	Time independent a	nd time dep	pendent									
	Quantum models:	Particle	in a box	k-1D, two	dimensi	onal a	and three					
	dimensional, degene	eracy, appl	ication to	linear conj	ugated m	olecul	ar systen	1,				
II	free particles, ring	g systems	. Harmo	nic Oscilla	tor-wav	e equ	ation an	d	15			
	solution, annarmon	solution	calculatio	n of rotati	gnificano	stante	and bon	с- Д				
	length of diatomic n	nolecules	calculatio			stants	and bon	u				
	Applications to Hy	vdrogen a	nd Poly	electron at	oms:	Hvdr	ogen ator	n				
	and hydrogen like	ions, Ham	iltonian-v	wave equat	ion and	solutio	ons, radia	al				
	and angular funct	ions, repre	esentation	n of radial	distrib	ution	function	s.				
тт	Approximation methods –variation methods: trial wave function, variation								15			
111	integral and application to particle in 1D box. Perturbation method - first								15			
	order applications. Hatrefock self-consistent field method, Hohenberg-Kohn											
	theorem and Kohn-Sham equation, Helium atom-electron spin, paulis											
	exclusion principle	and Slater (determina	ition.	1	4	<u>,.</u>					
	Group theory: G	roups, su	b groups	, symmetr	y eleme	ents, c	operation	s,				
	D_{1} Td and Ob M	allu iloii-az	entation	and classes	of symm	Cn, Cn petry (h, D_n , D_n	h,				
IV	reducible irreducit	allix repres	direct pr	oduct ren	or synn resentatio	on T	be Gree	s, at	15			
	orthogonality theore	em – irred	ucible re	presentation	and real	duction	ne orea	а. Э.				
	construction of char	acter table	for C_{2v} .	C_{2h} , C_{3v} and	D_{2h} poir	t grou	ps.	~,				
	Applications of o	quantum	and gro	up theory	: Hydr	ogen	Molecule	<u>-</u>				
	Molecular orbital th	- neory and 1	Heitler Lo	ondon (VB)) treatme	ent, En	ergy leve	el				
V	diagram, Hydrogen	molecule	ion; Us	e of linear	variatio	on fur	nction an	d	15			
•	LCAO methods. El	ectronic co	njugated	system: Hu	ickel me	thod to	o Ethylen	e	10			
	butadiene, cyclopr	openyl, cy	clo butac	liene and E	Benzene.	Appli	cations of	of				
	group theory to mol	ecular vibr	ations, ele	ectronic spe	ctra of e	thylen	e.					

Course Outcomes						
Course Outcomes	On completion of this course, students will be able					
CO1	To discuss the characteristics of wave functions and symmetry functions.					
CO2	To classify the symmetry operation and wave equations.					
CO3	To apply the concept of quantum mechanics and group theory to predict the electronic structure.					
CO4	To specify the appropriate irreducible representations for theoretical applications.					
CO5	To develop skills in evaluating the energies of molecular spectra.					

1 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi,					
¹ 2010, 4th revised edition.					
F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2 nd					
² edition.					
A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to					
⁵ Chemical Applications, John and Willy & Sons Ltd., 2013, 2 nd Edition.					
T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi,					
⁴ 2018, 4 th edition.					
G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A.					
⁵ McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2 nd edition.					
References Books					
(Latest editions, and the style as given below must be strictly adhered to)					
1 N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition.					
2 D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva					
² Books Pvt. Ltd, New Delhi, 2012.					
R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical					
⁵ Systems, Oxford & IBH Publishing Co., New Delhi, 1999.					
R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc,					
4 1980					
5 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011, Reprint.					
Web Resources					
1 https://pptel.ac.ip/courses/10/10112/					
2. https://ipc.iisc.ac.in/~kls/teaching.html					

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	Μ	S	S	S	S	М	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	Μ	S	S	S	S	Μ	S	S	S	S
CO5	Μ	S	Μ	S	S	М	S	Μ	S	S

3 – Strong, 2 – Medium , 1 - Low

Mapping with Programme S	pecific Outcomes:
--------------------------	-------------------

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15

Weighted Course Co	percentage of ontribution to I	Pos	3.	.0		3.0		3.0	3	.0		3.0		
Title of th	e Course	ANA	LYT CTI(ICA CAL		NSTRU	ME	NTAT	ION	TEC	HNI	QUI	ES	
					5									
Category	Core - 12	Year Seme	ester	I I	I V	Credi	its	4		Course Code		23220440		04403
Instructio	nal Hours	Lectu	ire	Tutor	rial	Lab Practi	ce	Total	CL	A E	xterr	nal		Total
per week		-		-		5		5	25		75			100
			I	Learı	ning	g Objec	tive	S						
を To a を To a を To mea	lesign chromato analyze differen evaluate differen surements.	ographi t const ent co	c met ituent ntami	thods ts thr inant	s for ougl s in	identifi h instru mater	cati men ials	on of sp tal meth using	oecies nods turbio	s. of ana dimet	alysis ry ai	s. nd c	one	ductivity
🗷 To o	lesign experime	nts for	anal	ysis c	of in	organic	and	l organi	c mat	erials	5.			
🗷 To a	analyze constitu	ents in	mate	rials	usin	ng emiss	sion	and abs	orpti	on tee	chniq	ues.		
				E	xpe	riment								
1. Deta and 2. Deta con- dilu 3. Con-	ermination of th verifying Ostwa ermination of th centrations and o tions.	e equiv ald dilu e equiv examir	valent ition valent ning t	t cone law. t cone he va	duct Cal duct lidit	ance of culation ance of ty of the	a w n of a st e On	reak acid the diss rong ele isager's	d at d ociat ectrol theor	iffere ion co yte at ry as l	ent co onsta t diffe limiti	ncer nt of erent ing la	tra the aw	tions e acid. at high
$\frac{5.}{4}$ Con	ductometric tit	ation o	паш .f NH		e oi Is N	пстан Гоон	uC	пзсоо	II VS	s maO	/П.			
4. Con	ductometric titr	ation o	f CH	4C1 V	7 8 1 N 7 N a	Vs HC	1							
6. Pote	entiometric titrat	tion of	a miy	sture	of H	ICI and	CH	[aCOOF	[Vs]	NaOF	ł			
7. Det	ermination of pl	Xa of w	veak a	icid b	ov E	MF me	thod	l.		uor				
8. Pote	entiometric titrat	tion of	FAS	Vs K	K_2Cr	207								
9. Pote	entiometric titrat	tion of	KI V	s KN	/InO	4.								
10. Pote	entiometric titrat	tion of	a miy	kture	of C	Chloride	e and	d Iodide	Vs A	AgNO) _{3.}			
11. Det	ermination of th	e pH o	f buf	fer so	oluti	on by E	MF	method	lusin	g Qui	inhyc	lrone	e ar	ıd
Cal	omel electrode.	• •			•			6 . 1 1	D 1	•		.1	1	
	study of the inver	sion of	cane	sugar	in th	ne presei	ice o	of acid b	y Pola	arimet	ric m	etho	1.	
1. Esti 2. Esti 3. Det	mation of Fe, C mation of Na an cermination of sp	u and l id K by pectrop	Ni by 7 flan 9hoto	colo ne ph metri	rime otor call	etric me netric m y the m	thoo neth ole 1	1. od. ratio of	the fe	errithi	iocya	nate	col	mplex
4. Det	equilibrium con ermination of th	e amoi	or the	nol/L) of	ferricya	anid	e preser	nt in t	he giv	ven s	oluti	ion	using
5. Det	ermination of th	e diffu	sion d	coeff	icier	nt of fer	ricv	anide u	sing a	evelie	volt	amm	netr	V.
6. Det cycl	ermination of th ic voltammetry.	e stanc	lard r	edox	pote	ential of	f fer	ri-ferro	cyani	de rec	dox c	oup	le u	sing
7. Esti turb	mation of the ar idimeter.	nount	of sul	phate	e pre	esent in	the	given so	olutio	on usi	ng N	ephe	lon	netric
8. Esti met	8. Estimation of the amount of nitrate present in the given solution using spectrophotometric method.													
9. Hea	vy metal analys	is in te	xtiles	and	text	ile dyes	by	AAS						
10. Det	10. Determination of caffeine in soft drinks by HPLC													
11. Ana	lysis of water qu	uality f	hroug	gh CO	UD,	DO, B(JD	measure	emen	ts.				
12. ASS	ay of Riboflavin	and h	on in	table	et 10	ormulati	ons	by spec	troph	iotom	letry			
13. ESU 14 Det	mation of Chron	inum 11 ern_V/	1 stee	1 Sall	ipie	of Indi	not ne c	motome	uy ng hu	fluor	imet	rv		
15. Det	ermination of as	corbic	acid	in rea	al sa	mples u	ising	g Differ	entia	l Puls	e Vo	' y ltam	me	try and

comparing with specifications

16. Separation of (a) mixture of Azo dyes by TLC (b) mixture of metal ions by Paper chromatography

17. Estimation of chlorophyll in leaves and phosphate in waste water by colorimetry.

18. Estimation of Fe(II) by 1,10 phenonthroline using spectrophotometry

Course	On completion of this course, students will;
Outcomes	
CO1	To recall the principles associated with various inorganic organic and physical
COI	chemistry experiments
CO2	To scientifically plan and perform all the experiments
CO3	To observe and record systematically the readings in all the experiments
COA	To calculate and process the experimentally measured values and compare with
04	graphical data.
CO5	To interpret the experimental data scientifically to improve students efficiency for
	societal developments.

Text Books (Latest Editions)						
1	Vogel's Text book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England,					
1	2003					
2	G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's Textbook of					
	Quantitative Chemical Analysis; 6th ed., ELBS, 1989.					
3	J. D. Woollins, Inorganic Experiments; VCH: Weinheim, 1995					
4	B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva Books, New					
	Delhi, 2009.					
5	Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.Viswanathan Co. Pvt.,					
3	1996.					
References Books						
(Latest editions, and the style as given below must be strictly adhered to)						

1	N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry – Labmanual, S.
	Viswanathan Co. Pvt. Ltd, 2009.
2	J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 2011.
3	J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.
4	G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8th
	edition, McGraw Hill, 2009.
5	J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co.,
	1987.

Mapping with Programme Outcomes:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	
CO1	S	S	S	S	М	S	S	S	S	М	
CO2	М	S	S	S	S	М	S	S	S	S	
CO3	S	S	М	S	S	S	S	М	S	S	
CO4	Μ	S	S	S	S	М	S	S	S	S	
CO5	М	S	М	S	S	М	S	М	S	S	

3 – Strong, 2 – Medium , 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Core 212204404	PROJECT WITH VIVA VOCE	Code:
	SEMESTER IV	5 Hrs /
Credits 3		

Post Graduate students of Chemistry will do projects under the guidance of staff members of chemistry during IV semester. The projects will be on chemistry and chemistry related fields. The project diary signed by the project guide and HOD must be submitted in the month of April. The Viva on Project will be conducted jointly by the guide, external examiner and the HOD.

	Internal	External
Project	15	50
Viva	10	25

Title of	f the Course	POLYN	IER CHE	EMISTRY							
				-	-	•					
Catego	ry EC – 6.1	Year Semeste	II er III	Credits	4	Course Code	2322	204405			
Instruction Instruction	ctional Hours	Lecture	Tutorial	Lab Practice	Total	CIA	External Total				
4 4 25 75 100							100				
Learning Objectives											
×]	To learn the bas	sic concep	ots and bor	nding in pol	ymers.						
×]	fo explain varie	ous types	of polyme	rization rea	ctions ar	nd kinetics					
	l'o understand t	he import	ance of in	dustrial pol	ymers ar	nd their syi	thetic uses.				
ية حرا	l o determine th	le molecu	lar weight	of polymer	'S. ndu otivit	ing					
		legradatio	n or poryn	ners and co.	naucuvii	lies.		No. of			
UNIT				Details				Periods for the Unit			
	Characteriza	tion. Mo	lecular w	eight and	its Dete	rmination	: Primary				
	and secondar	v bond	forces in	polymers:	cohesiv	e energy.	molecular				
	structure, che	emical tes	sts, therma	al methods	, Tg, m	olecular d	istribution,				
Ι	stability. Dete	erminatior	of Molec	ular mass c	of polymo	ers: Numb	er Average	12			
	molecular ma	ass (M _n)	and Wei	ght averag	e molec	cular mass	s (M_w) of				
	polymers. Mo	olecular w	eight dete	ermination	of high p	polymers t	y physical				
	and methods.		• .•	4 D I		<u> </u>					
	Mechanism	and k	inetics (of Polym	erization	n: Chair	n growth				
II	regular polym	on: Cation	lle, anion der Natta	nolymeriz	uical po	action kin	on, Stereo	12			
	growth polym	erization.	Degree of	f polymeriz	ation.		enes. step				
	Techniques	of Poly	merizatio	n and Po	lvmer	Degradati	on: Bulk,				
	Solution, En	nulsion,	Suspensio	on, solid,	interfaci	ial and	gas phase				
III	polymerizatio	n. Types	of Polyr	ner Degrad	lation, T	Thermal d	egradation,	12			
	mechanical de	egradation	n, photode	egradation,	Photo s	stabilizers,	Solid and				
	gas phase poly	ymerizati	on.	0.011 0							
	Industrial Po	olymers:	Preparatio	n of fibre f	orming p	olymers, e	elastomeric				
	material. In	ermoplasi	Vinul Ch	ethylene,	Polyproj	pylene, p	olystyrene,				
	and polyester	Thermos	etting Pla	stics. Phene	y tetral	dehvde an	d exposide				
IV	resin Elastor	ners: Natu	ral rubber	and synthe	tic rubbe	er - Buna -	N. Buna-S	12			
	and neoprene	. Conduc	ting Poly	mers: Elem	entary ic	deas; exan	ples: poly				
	sulphur nitri	les, poly	phenyler	ne, poly p	yrrole a	and poly	acetylene.				
	Polymethylme	ethacrylat	e, poly	imides, p	olyamid	les, poly	yurethanes,				
	polyureas, pol	yethylene	and poly	propylene g	lycols.						
	Polymer Pr	rocessing	Compo	ounding: I	Polymer	Additive	s: Fillers,				
	Plasticizers,	antioxida	ints, ther	mal stabi	lizers, 1	tire retard	dants and				
	colourants. Pr	ocessing	Technique	es: Calenda	ring, die	casting, c	ompression				
V	casting Th	Jecuon n	iouiuilig,	aming C	uumg al 'atalweie	and or	ong. rum	12			
	Polymerizatio	n catalvei	ing, ro s catalvet	support of	atarysis av comr	and Ca	sic catalyst				
	auto-exhaust	catalvsis	vanadiu	m, heteros	eneous	catalysis	and active				
	centres.	<i>j z z z</i>	,	,	,						

	Course Outcomes						
Cours Outcor	nes On completion of this course, students will be able						
COI	To understand the bonding in polymers.						
CO2	To scientifically plan and perform the various polymerization reactions.						
CO3	To observe and record the processing of polymers.						
CO4	To calculate the molecular weight by physical and chemical methods.						
CO5 To interpret the experimental data scientifically to improve the quality of synth polymers.							
	Text Books (Latest Editions)						
1	V.R. Gowariker, Polymer Science, Wiley Eastern, 1995.						
2	G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International (Pvt) Limited, 1996.						
3	M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand & Company, New Delhi, 2004.						
	References Books						
	(Latest editions, and the style as given below must be strictly adhered to)						
1	F. N. Billmeyer, <i>Textbook of Polymer Science</i> , Wiley Interscience, 1971.						
2	A. Kumar and S. K. Gupta, <i>Fundamentals and Polymer Science and Engineering</i> , Tata McGraw-Hill, 1978.						

mapping with i regramme Outcomes.										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	М
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

Mapping with Programme Outcomes:

3-Strong, 2-Medium , 1-Low

Mapping with Programme Specific Outcomes: CO/PO PSO3 PSO4 PSO5 PSO1 PSO2 CO1 3 3 3 3 3 **CO2** 3 3 3 3 3 3 **CO3** 3 3 3 3 **CO4** 3 3 3 3 3 3 3 3 3 CO5 3 Weightage 15 15 15 15 15 Weighted percentage of 3.0 3.0 3.0 3.0 3.0 **Course Contribution to Pos**

Title of	of the Course CHEMINFORMATICS									
Cotogo	EC 62	Year II		Credite	4	Course	1311	204406		
Calego	$\mathbf{x} = \mathbf{y} = \mathbf{x} = \mathbf{x}$	Semeste	r III	Creatis	4	Code	2322	.04400		
Instruc	ctional Hours ek	Lecture	Tutorial	Lab Practice	Total	CIA	External	Total		
per we		4	-		4	25	75	100		
			Lea	rning Obje	ectives					
Ľ	To improve	e the k	nowledge	e of che	mical s	structure	represente	ation and		
	Chemoinfor	matics to	ools for di	rug discov	ery					
Ľ	This subject	t will helj	p to unde	rstand the	e basic c	concept of	chemoinfo	rmatics		
								No. of		
UNIT]	Details				Periods for		
								the Unit		
Ŧ	Computer Rep	resentatio	n of Mole	cules in D	atabases	: Molecula	r models –	10		
1	Chem draw	– Conn	ection ta	ble – Lii	near no	otation –	Canonical	12		
	representation	– Substru	cture – Su	b graph iso	merism	based finge	er print.			
	Chemical Infor	rmation –	An Introd	luction: His	story of S	Scientific I	nformation	10		
II	 Periodic tabl 	le – Hom	ologous se	eries – Con	cepts in	Chemistry	v – Internet	12		
	test servers – N	/lolecular	formats ar	nd MIME.						
тт	Computer Sou	rces of C	hemical I	nformation	: Comm	unication -	– WWW –	12		
111	URLS – Chem	istry on w	vebsite – C	Chemical lit	erature –	- Secondar	y literature.	14		
	Chemical Infor	rmation S	earches	Searchir	na skil	le _ Sti	ategies _			
IV	Advantages and disadvantages – CAS – Keyword search – Chemical									
	abstract – Flow of chemical information and computer searching.									
	Application of	Chamin	formatica	Chemical	databasy		ubstructure			
V	searching – 31	D databas	e searchi	19 – Gener	ration ar	ud retrieva	1 - Use of	12		
	QSAR and con	nbinatoria	l library in	n drug desig	gn.	14 1011074	. 0.50 01			

Course (Dutcomes
----------	----------

Cours Outcon	es On completion of this course, students will be able						
CO1	To understand the Molecular models						
CO2	To scientifically plan and perform the various analysis of Chemical Information						
CO3	To understand the Chemical literature.						
CO4	To identify the chemical information and computer searching.						
COS	To interpret the experimental data scientifically to improve the quality of drug						
	design.						
Text Books (Latest Editions)							
Handbo	ok of Chemoinformatics, volume 1, by John Gastiger, Thomas Engel, WILEYVCH pub						
2003.							
	References Books						
	(Latest editions, and the style as given below must be strictly adhered to)						
1	Andrew R.Leach, Molecular Modelling, Principles and Applications, 2 nd Edition, Dorset						
¹ Press, Dorchester, Dorset, 2001.							
2	An Introduction to Chemoinformatics, by Andrew R. Leach & Valerie j. Gillet, Springer.						
3	Instant Notes in Medicinal Chemistry, by G. Patrick, BIOS Scientific pub.						

Γ

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1	S	S	S	S	М	S	S	S	S	Μ
CO2	Μ	S	S	S	S	Μ	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	Μ	S	S	S	S	Μ	S	S	S	S
CO5	Μ	S	Μ	S	S	M	S	Μ	S	S

Manning with Programme Outcomes:

CO /PO PSO2 PSO4 PSO5 PSO1 PSO3 **CO1** 3 3 3 3 3 **CO2** 3 3 3 3 3 **CO3** 3 3 3 3 3 **CO4** 3 3 3 3 3 CO5 3 3 3 3 3 Weightage 15 15 15 15 15 Weighted percentage of 3.0 3.0 3.0 3.0 3.0 **Course Contribution to Pos**

Title of	the Course	CHEMI	STRY OF	F NATURA	L PRO	DUCT	'S		
		B							
Categor	v SEC 4	Year	II	Credits	2	C	ourse	23	2204407
Instruct	ional Hours	Semeste	r IV	Lab	Tatal		ode		
per wee	K	Lecture	Tutorial	Practice	10141	CIA	Extern	al	Total
-		4			4	25	75		100
	learn the head		Learning	g Objective	S	of his			
	b learn the basic	concepts	and b10.	logical imp	ortance	OI DIO	omolecu	les a	nd natural
pr	oducts.								
z To	elucidate the stru	icture dete	rmination	of biomole	cules an	d natur	al produ	cts.	
æ E	xplain the fundame	entals of U	JV-Vis an	d IR spectro	oscopy.				
~ M	aka usa of tha l	hasia prir	ainlag un	dorlying N	MD on	1 mag	apostro		w and ita
ar	onlication in struct	ural elucio	lation.	derrying in	wir an	1 11185	specific	scop	y and its
u			iution.						No. of
UNIT			Deta	ils				Pe	riods for
								t	he Unit
	Alkaloids and T	erpenoids	5:						
	a) Alkaloids	s:Introduc	tion, occur	rrence, class	sification	n, isola	tion and		
	functions	ofalkalo	ids. Clas	ssification,	general	meth	nods of		
Ι	structural	elucidatio	n. Cher	nical me	thods	of	structure		12
	determina	ation of Qu	uinine and	Morphine.					
	Terpenoi	ds:Introdu	uction,	occuri	rence,		Isoprene		
	rule, classification	n. General	methods	of determin	ningstruc	cture. S	Structure		
	determination of	Camphor,	Abietic a	cid, Cadinei	$\frac{10}{2}$	Ingibei	rine.		
	a) Anthocya	navones,	rurines a ndflavone	s. Introduc	s: ction to	anthoc	vanines		
	Structure	and svnt	hesis ofar	nthocvanine	s. Cvan	idine of	chloride:		
	structure	and d	eterminati	on. Flave	ones: S	Structu	re and		
	determina	ation of Qu	uercetin.						
II	b) Purinesa	ndSteroid	ls: Introdu	ction, Ccc	urrence	and	isolation		12
	of purine	s. Classif	ication an	id spectral	properti	es of	steroids.		
	Diele' by	and synthese	hiologia	Uric acid a	na Caff	eine. S	Steroids:		
	sterols	cholestero	-occurren	a importan ce tests	nhysiole	or read	activity		
	biosynthe	sis of cho	lesterol fro	om squalene).	51041	, ity,		
	Spectroscopy:			1					
	a) UV Spectro	oscopy –	introductio	on – electro	onic trar	sition	– Wood		
	Ward rules	- calculat	tion of Xr	nax of Con	ijugated	Diene	s, αβ –		
	Unsaturated	Carbony	I Compou	unds and a	romatic	comp	ounds –		10
	study of in o	$c_{1S} - trans$	1somers	- Tautomer	rs –axial	and e	quatorial		12
	b) IR Spectro	es – charg	ge transfer	complexes	 Aolecula	r Vibr	ations		
	Fermi reson	ance to c	ver tones	Vibrationa	1 Freque	encv –	Factors		
	Influencing	Group Fre	equencies -	– study of h	ydrogen	bondi	ng.		
	Mass Spectrosco	opy:	·	•			-		
	Mass Spectrosco	py: Princ	iple, Type	e of ions, l	Base Pe	ak, Pa	rent ion,		
IV	Metastable ion an	nd Isotopi	c ions Niti	rogen rule, I	Fragmen	itation,	General		12
	Rules, Pattern o	f Fragmer	ntation for	r Various c	classes of	of Con	pounds,		
	McLafferety Rea	rrangemei	nt – Retro	Diels – Ald	er React	ion.			

	NMR Spectroscopy:	
v	 a) ¹H – NMR Origin of NMR Spectra, Chemical Shift. Spin – Spin Coupling, Coupling Constant, First Order and Second Order Spin – Spin Splitting, Influence of Stereochemical Factors on Chemical Shift of Protons, Simplification of Complex Spectra, Spin Decoupling – Double Resonance, Shift Reagents, CIDNP. b) ¹³C – NMR Spectroscopy, Basic Principle of FT Technique, Assignment of the Signals – broad band decoupling Off, Resonance Decoupling 	12
	c) 2D NMR techniques– COSY, HETCOR, NOESY, INADEQUATE. Structural Problems based on all the above Techniques.	

	Course Outcomes							
Course	Ourse On completion of this course, students will be able;							
Outcomes								
CO1	To understand the biological importance of chemistry of natural products.							
CON	To scientifically plan and perform the isolation and characterization of synthesized							
02	natural products.							
CO3	To explain the fundamental concepts of UV-Vis and IR spectroscopy and analyze							
005	their application in simple molecules							
CO4	To understand the basic concept of mass spectroscopy.							
CO5	To explain the theories of NMR spectroscopy of organic molecule.							

Text Books (Latest Editions)

- 1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1, Himalaya Publishing House, Mumbai, 2009.
- 2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2, Himalaya Publishing House, Mumbai, 2009.
- 3. Dyer J.R., Application of Absorption Spectroscopy, 2nd Edition, Prentice–Hall, Hampshire, 1965.
- 4. Howe I., Williams D.H. and Bowen R.D., Mass Spectrometry, Principles and Applications McGraw Hill, 2nd Edition, New Delhi, 1981.
- 5. Kemp, Organic Spectroscopy, ELBS, 3rd Edition, Hampshire, UK, 1987.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. L. Finar, Organic Chemistry Vol-2, 5thedition,PearsonEducation Asia, 1975.
- 2. L. Finar, Organic Chemistry Vol-1, 6thedition, Pearson Education Asia,2004.
- 3. Silverstein B.M., Bassler G.C., and Morrill T.C., Spectrometric Identification of Organic Compounds. Wiley, 5thEditionn., New York, 1963.
 - 4. Morrison R.T., and Boyd R.N., Organic Chemistry, Prentice–Hall, 6th Edition, New Delhi, 1995.

Web Resources

1. https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic

Trupping with 1 ogi unine Outcomes.									
	PO 1	PO 2	PO 3	PO 4	PO 5				
CO1	S	S	S	Μ	S				
CO2	S	S	S	Μ	S				
CO3	S	S	Μ	Μ	S				
CO4	S	Μ	Μ	Μ	S				
CO5	S	Μ	Μ	Μ	S				
	• ~			_					

Mapping with Programme Outcomes:

Mapping with Programme Specific Outcomes:

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		INTERPRETATION AND IDENTIFICATION OF CHEMICAL COMPOUNDS								
Category	AECC 4	Year	II	Credita	2	Course		222204408		
		Semeste	r IV	Creatis	Δ	C	ode	232204400		
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	ernal Total		
		-		2	2	25	75		100	
Prerequis	sites	Basic k	nowledge	of chemist	ry					
			Learning	g Objective	S					
💉 To a	nalyze constitu	ents in the	material u	ising emissi	ion and a	lbsorpt	tion tech	niqu	es.	
Experiment										
Interpretation and identification of the given spectra of various chemical compounds arrived at the following instruments 1.UV-Visible 2. IR 3.Raman										
5.	5.ESR 6. NMR									

Course Outcomes							
Course Outcomes	On completion of this course, students will be able;						
CO1	To interpret the experimental data scientifically to improve the students efficiency for social developments.						

Text Books (Latest Editions)

- 1. Robert silverstein & Francis webster, spectrometric identification of organic compounds, 6th ed, john wiley & sons, 2006.
- 2. Hamming M, editor. Interpretation of mass spectra of organic compounds. Elsevier; 2012 Dec 2.

3. Jacobsen NE. NMR data interpretation explained: understanding 1D and 2D NMR spectra of organic compounds and natural products. John Wiley & Sons; 2016 Oct 31.

- 4. Mabbs FE, Collison D. Electron paramagnetic resonance of d transition metal compounds. Elsevier; 2013 Oct 22.
- 5. Larkin P. Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier; 2017 Nov 13.

Web Resources

1. https://www.wiley.com/en-us/Interpretation+of+Organic+Spectra-p-9780470825167

2. https://search.worldcat.org/title/Interpreting-spectra-of-organic-molecules/oclc/19639258

Mapping with Programme Outcomes:										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10
CO1		S	S	S	Μ	S	S	S	S	Μ
CO2	Μ	S	S	S	S	М	S	S	S	S
CO3	S	S	Μ	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	Μ	S	S	S	S
CO5	Μ	S	Μ	S	S	Μ	S	Μ	S	S
3 – Strong, 2 – Medium, 1 – Low										

Mapping with Programme Outcomes:
EXTENSION ACTIVITY

Course Code: 232204409

Credit: 1

The Students should undergo any of the following activities during the period of the program (Two Years) outside the college or in any other institutions. This Extension Activity will be evaluated through the certificate (minimum one) submitted by the students. As per the norms, students must carry out any one of the activity for obtaining the PG Degree. The concern Head of the Department will evaluate the students and submit the report to the Controller of Examinations at the end of the IV semester.

List of Extension Activity:

- a) Conducting rally, awareness program etc.
- b) Seed ball, tree plantation, cleaning work etc.
- c) Blood donation, medical camp, organ donation etc.
- d) Assisting school children, tribals, and illiterate in learning.
- e) Giving assistance to orphanages and old age homes and patients.
- f) Awareness program on financial literacy, gender equality, women education etc.

Any other activities which are relevant to develop nearby localities.